Spaces:
Build error
Build error
File size: 34,888 Bytes
e7d3e35 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 |
import logging
from bisect import bisect_left
from collections import OrderedDict
import cv2
import numpy as np
import torch
from m4.training.utils import FAKE_TOKEN_AROUND_IMAGE_V2, IMAGE_TOKEN, _convert_to_rgb
logger = logging.getLogger(__name__)
# Hyper-parameters
_IMAGE_BONUS_VALUE = 2 # The bonus value for tokens preceding the image token
_MIN_LENGTH_DOCUMENTS_TO_PACK = (
5 # Minimum lengths of documents to pack together (lenghts is measures in number of tokens)
)
def incremental_to_binary_attention_mask(incremental_mask, num_classes=-1):
# This function converts: [-1, 0, 1] => [[0, 0], [1, 0], [0, 1]]
# If any of images index are more than num_classes, set them to -1.
# Words after the max number of images allowed have been seen don't attend on anything
if num_classes != -1:
incremental_mask[incremental_mask >= num_classes] = -1
negatives = incremental_mask == -1
incremental_mask[negatives] = 0
attn_mask = torch.nn.functional.one_hot(incremental_mask, num_classes=num_classes)
attn_mask[negatives, :] = 0
return attn_mask
def image_attention_mask_for_packed_input_ids(input_ids, tokenizer):
image_attention_mask = torch.full_like(input_ids, fill_value=-1)
next_image_attention_mask = torch.full_like(input_ids, fill_value=-1)
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
eod_token_id = tokenizer.eos_token_id
for batch_idx in range(input_ids.size(0)):
count = -1
seen_eod = False
for idx, token_id in enumerate(input_ids[batch_idx]):
if token_id == image_token_id:
count += 1
image_attention_mask[batch_idx][idx] = count
seen_eod = False
else:
image_attention_mask[batch_idx][idx] = count
if seen_eod:
image_attention_mask[batch_idx][idx] = -1
if token_id == eod_token_id:
seen_eod = True
for batch_idx in range(input_ids.size(0)):
count = -1
seen_eod = False
for idx in range(input_ids[batch_idx].size(0) - 1, -1, -1):
token_id = input_ids[batch_idx][idx]
if token_id == image_token_id:
count += 1
next_image_attention_mask[batch_idx][idx] = count
seen_eod = False
else:
next_image_attention_mask[batch_idx][idx] = count
if token_id == eod_token_id:
seen_eod = True
if seen_eod:
next_image_attention_mask[batch_idx][idx] = -1
non_negative_indices = next_image_attention_mask[batch_idx] != -1
next_image_attention_mask[batch_idx][non_negative_indices] -= count
next_image_attention_mask[batch_idx][non_negative_indices] *= -1
return image_attention_mask, next_image_attention_mask
def laplacian_blur_detection(image, threshold=0.0):
# compute the Laplacian of the image and then return the focus
# measure, which is simply the variance of the Laplacian
if threshold == 0.0:
return False
image = np.array(image)
if len(image.shape) == 3 and image.shape[2] == 3:
gray = cv2.cvtColor(image, cv2.COLOR_RGB2GRAY)
return cv2.Laplacian(gray, cv2.CV_64F).var() < threshold
else:
# Don't remove grayscale images
return False
def fft_blur_detection(image, size=50, threshold=0.0):
if threshold == 0.0:
return False
(h, w) = image.shape
(cX, cY) = (int(w / 2.0), int(h / 2.0))
fft = np.fft.fft2(image)
fftShift = np.fft.fftshift(fft)
fftShift[cY - size : cY + size, cX - size : cX + size] = 0
fftShift = np.fft.ifftshift(fftShift)
recon = np.fft.ifft2(fftShift)
magnitude = 20 * np.log(np.abs(recon))
mean = np.mean(magnitude)
return mean < threshold
def split_pack_and_pad(
sample,
tokenizer,
max_seq_len,
image_transform,
max_num_images,
max_num_samples_per_document=10,
prefix_seed=(0, 0),
is_blurred_fn=None,
blur_threshold=0.0,
add_begin_of_doc_token=False,
add_end_of_doc_token=True,
max_num_images_per_document=None,
):
"""
Return a batch of samples in the format expected by the model which
includes `input_ids`, `pixel_values`, `attention_mask`, `image_attention_mask`,
and `next_image_attention_mask`. The `input_ids` are sampled from the document to
ensure it has `max_seq_len` tokens otherwise, the shorter documents are packed together.
For each document, we sample a maximum of `max_num_samples_per_document` or `max_num_samples_for_curr_document`
(where the latter is proportional to the length of the document and inversely proportional to the length of subsequences)
`input_ids` with sequence length `max_seq_len` from the document. This means that
each sample sampled can have different start index. Based on the start index of sample that
has been sampled, we also sample a maximum of `max_num_images` images from the document.
If there are less than `max_num_images` images in the document, we pad the images with zeros.
The start indexes are skewed towards subsequences that contain images.
Args:
sample (Dict): A sample object containing the document with images and text.
tokenizer (PretrainedTokenizer): Text tokenizer to be used.
max_seq_len (int): Maximum sequence length of the returned text tokens.
image_transform (Callable): Transform to be applied on the images
max_num_images (int): Maximum number of images to be sampled per sample. If less, they are padded with zeros.
max_num_samples_per_document (int, optional): Maximum number of samples per document to be sampled. Defaults to 10.
prefix_seed: Prefix seed sequence for "reproducible randomness" in calls to `np.random.choice`
Returns:
_type_: _description_
"""
text_batch = sample["texts"]
image_batch = sample.get("image_embeddings", None)
is_raw_images = False
if image_batch is None:
image_batch = sample.get("images", None)
is_raw_images = True
if image_batch is None:
raise ValueError("Either image_embeddings or images must be present in the sample")
image_token_id = tokenizer.convert_tokens_to_ids(IMAGE_TOKEN)
last_was_image = False
if is_blurred_fn is None:
is_blurred_fn = fft_blur_detection
all_images = []
all_texts = []
for raw_images, raw_texts in zip(image_batch, text_batch):
# Filter ones that don't have either one image and one text word
if not any(raw_images) or not any(raw_texts):
continue
if max_num_images_per_document:
num_images = sum([1 if image is not None else 0 for image in raw_images])
if num_images > max_num_images_per_document:
continue
any_blurred = False
if is_raw_images and blur_threshold > 0.0:
for image in raw_images:
if image is not None:
image = _convert_to_rgb(image)
any_blurred = any_blurred or is_blurred_fn(image, threshold=blur_threshold)
if any_blurred:
break
if any_blurred:
continue
inds_of_texts_to_split = [
i
for i, text in enumerate(raw_texts)
if text is not None and isinstance(text, str) and "END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED" in text
]
if inds_of_texts_to_split:
splitted_raw_images, splitted_raw_texts = [], []
previous_i = 0
for i in inds_of_texts_to_split:
splitting = raw_texts[i].split("END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED")
part1, part2 = splitting[0], splitting[-1]
sub_doc_images = raw_images[previous_i:i] + [None]
sub_doc_texts = raw_texts[previous_i:i] + [part1.strip()]
if not any(sub_doc_images): # This can happen if all images in raw_images[0:i] are all None
continue
splitted_raw_images.append(sub_doc_images)
splitted_raw_texts.append(sub_doc_texts)
if part2.strip() == "":
previous_i = i + 1
else:
raw_texts[i] = part2.strip()
previous_i = i
if previous_i < len(raw_images) and any(raw_images[previous_i:]):
splitted_raw_images.append(raw_images[previous_i:])
splitted_raw_texts.append(raw_texts[previous_i:])
else:
splitted_raw_images, splitted_raw_texts = [raw_images], [raw_texts]
# Sanity check
if [len(ims) for ims in splitted_raw_images] != [len(txts) for txts in splitted_raw_texts]:
raise ValueError(
"Number of images and texts don't match after splitting on `END_OF_DOCUMENT_TOKEN_TO_BE_REPLACED`."
" Something core went wrong during the splitting and needs to be fixed."
)
for s_r_ims, s_r_txts in zip(splitted_raw_images, splitted_raw_texts):
images, web_text = [], ""
for image, text in zip(s_r_ims, s_r_txts):
if text is None and image is None:
continue
if image is not None:
web_text += f"{FAKE_TOKEN_AROUND_IMAGE_V2}{IMAGE_TOKEN}"
if is_raw_images:
images.append(image_transform(image))
else:
images.append(torch.tensor(image))
last_was_image = True
elif text is not None:
if last_was_image:
web_text += f"{FAKE_TOKEN_AROUND_IMAGE_V2}{text}"
last_was_image = False
else:
web_text += f" {text}" if web_text != "" else text
if last_was_image:
web_text += f"{FAKE_TOKEN_AROUND_IMAGE_V2}"
web_text = web_text.strip(" ")
# This is mostly a sanity check. Cases like that should not happen at that point.
if web_text == "" or len(images) == 0:
continue
images = torch.stack(images)
all_images.append(images)
web_text_ids = tokenizer.encode(web_text, add_special_tokens=False)
if add_end_of_doc_token:
web_text_ids += [tokenizer.eos_token_id]
if add_begin_of_doc_token:
web_text_ids = [tokenizer.bos_token_id] + web_text_ids
all_texts.append(web_text_ids)
output_input_ids = []
output_images = []
output_attention_masks = []
output_num_images = []
output_num_text_tokens = []
input_ids_to_pack = []
images_to_pack = []
for images, text in zip(all_images, all_texts):
# We save all the documents which are shorter than the max_seq_len to pack them together.
if len(text) <= max_seq_len:
if len(text) < _MIN_LENGTH_DOCUMENTS_TO_PACK: # Filter out extremely short sequences
continue
input_ids_to_pack.extend(text)
images_to_pack.extend(images)
else:
# Computing the bonus scores for tokens near images to skew the sampling towards them
# The main idea is to give a bonus to tokens that are closely before an image token, so that these tokens have more chance to be sampled.
# Bonuses are computed for each image, which means a given token can receive bonuses from multiple images if this token is closely preceding multiple images.
# We sum all the bonuses and L1 normalized along the seq_len axis to get a probability distribution.
# Each token start with a regular bonus of 1, which corresponds to the uniform distribution over the sequence when there are no bonuses added.
# Now the remaining question is which precedding tokens do we distribue bonuses to.
# We first observe that for the sampled sub-sequence to be considered valid (i.e. sub-sequence contains an image), the start index can only be among [image_idx - max_seq_len + 1, image_idx].
# For the sake of the explanation, let's split the [image_idx - max_seq_len + 1, image_idx] interval in 3 parts: left, middle and right (in increasing order).
# If we give bonuses to the tokens just before the image (right part), then we are favoring p_next=0 because only the tokens after the image have an image to attend to.
# In practice, images will tend to be at the beginning of the sampled sub-sequence.
# If we give bonuses very far before the image (left part), then we are favoring p_next=1 because only the tokens before the image gave an image to attend to.
# In practice, images will tend to be at the end of the sampled sub-sequence.
# To avoid choosing favoring p_next=0 or p_next=1, we can give bonuses to the tokens in the middle part.
# In practise, images will tend to be in the middle of the sampled sequence.
# Ultimately, we don't want to skew the distribution fed to model in that way (i.e. whether images are in the beginning, middle or end of the sampled sub-sequence),
# and have all these cases represented equally in the data. So the easiest is to distribute a bonus to all of the max_seq_len tokens preceding the image.
all_scores = np.array([1] * len(text))
for img_token_idx in np.where(np.array(text) == image_token_id)[0]:
all_scores[max(0, img_token_idx - max_seq_len) : img_token_idx + 1] += _IMAGE_BONUS_VALUE
# all_scores = np.clip(all_scores, a_min=1, a_max=3 * _IMAGE_BONUS_VALUE * max_num_images + 1) # We can optionally clip the bonuses to avoid having too high values (i.e. outliers documents)
all_scores = all_scores[:-_MIN_LENGTH_DOCUMENTS_TO_PACK]
# The number of samples is proportional to the length of the text and inversely proportional to the maximum sequence length
max_num_samples_for_curr_document = len(text) // max_seq_len
# Set "reproducible randomness" by creating an np.default_rng seeded by (main seed, epoch, rank_idx, worker_idx, mapped_batch_index, text len)
choices = np.random.default_rng(seed=list(prefix_seed) + [len(text)]).choice(
range(len(text) - _MIN_LENGTH_DOCUMENTS_TO_PACK), # shorter sub-sequences are reserved for packing
min(
len(text) - max_seq_len, 2 * max_num_samples_per_document
), # Sampling more than necessary and then breaking out of the for loop once we have enough samples
p=all_scores / np.linalg.norm(all_scores, ord=1),
replace=False,
)
nb_effective_sequences_out_of_sampling = 0
for start_index in choices:
image_start_index = text[:start_index].count(image_token_id)
text_sub_sequence = text[start_index : start_index + max_seq_len]
image_count = text_sub_sequence.count(image_token_id)
if image_count == 0:
# Skip if there are no images in the sequence
continue
if len(text_sub_sequence) < max_seq_len:
# If the sub-sequence is shorter than max_seq_len, we reserve it for packing
# It necessarily mean that the sub-sequence was sampled towards the end of the document,
# which implies that we only need the `image_start_index` and not the `image_end_index`
if text_sub_sequence.count(image_token_id) != len(images[image_start_index:]):
# A safeguard for this
logger.warning(
"Skipping this sample because of mismatch in actual number of images and "
"the '<image>' tokens in the text"
)
continue
input_ids_to_pack.extend(text_sub_sequence)
images_to_pack.extend(images[image_start_index:])
continue
current_images = images[image_start_index : image_start_index + min(max_num_images, image_count)]
if len(current_images) != min(max_num_images, image_count):
# A safeguard for something off about this document, maybe `<image>` tag that
# by there from before or some issue in parsing the image?
logger.warning(
"Skipping this sample because of mismatch in actual number of images and "
"the '<image>' tokens in the text"
)
break
padded_image_tensor = torch.zeros(max_num_images, *images.size()[1:])
padded_image_tensor[: min(max_num_images, image_count)] = current_images
output_images.append(padded_image_tensor)
output_num_images.append(min(max_num_images, image_count))
output_input_ids.append(torch.tensor(text_sub_sequence))
output_num_text_tokens.append(len(text_sub_sequence))
attention_mask = torch.ones((max_seq_len,), dtype=torch.long)
output_attention_masks.append(attention_mask)
nb_effective_sequences_out_of_sampling += 1
if nb_effective_sequences_out_of_sampling >= min(
max_num_samples_for_curr_document, max_num_samples_per_document
):
# We got all the samples we need for this document, so breaking out
break
# Pack the remaining sequences from `input_ids_to_pack` x `images_to_pack`
if input_ids_to_pack:
image_counter = 0
for i in range(0, len(input_ids_to_pack), max_seq_len):
current_input_ids = input_ids_to_pack[i : i + max_seq_len]
unpadded_seq_len = len(current_input_ids)
num_images = current_input_ids.count(image_token_id)
if num_images == 0:
continue
current_images = images_to_pack[image_counter : image_counter + num_images]
image_counter += num_images
if unpadded_seq_len < max_seq_len:
padded_input_ids = [tokenizer.pad_token_id] * max_seq_len
padded_input_ids[:unpadded_seq_len] = current_input_ids
current_input_ids = padded_input_ids
elif unpadded_seq_len > max_seq_len:
# This case has no purpose other than safeguard
continue
try:
current_images = torch.stack(current_images)[:max_num_images]
except Exception:
continue
padded_image_tensor = torch.zeros(max_num_images, *current_images.size()[1:])
padded_image_tensor[: current_images.size(0)] = current_images
attention_mask = torch.zeros((max_seq_len,), dtype=torch.long)
attention_mask[:unpadded_seq_len] = 1
output_images.append(padded_image_tensor)
output_input_ids.append(torch.tensor(current_input_ids))
output_num_text_tokens.append(unpadded_seq_len)
output_num_images.append(min(max_num_images, num_images))
output_attention_masks.append(attention_mask)
if len(output_images) == 0 or len(output_input_ids) == 0:
result = {
"input_ids": torch.tensor([], dtype=torch.long),
"attention_mask": torch.tensor([], dtype=torch.bool),
"image_attention_mask": torch.tensor([], dtype=torch.bool),
"next_image_attention_mask": torch.tensor([], dtype=torch.bool),
"num_images": torch.tensor([], dtype=torch.long),
"num_text_tokens": torch.tensor([], dtype=torch.long),
}
if is_raw_images:
result["pixel_values"] = torch.tensor([], dtype=torch.float32)
else:
result["image_embeddings"] = torch.tensor([], dtype=torch.float32)
return result
output_input_ids = torch.stack(output_input_ids)
output_images = torch.stack(output_images)
output_attention_masks = torch.stack(output_attention_masks)
image_attention_mask, next_image_attention_mask = image_attention_mask_for_packed_input_ids(
output_input_ids, tokenizer
)
image_attention_mask = incremental_to_binary_attention_mask(image_attention_mask, num_classes=max_num_images)
next_image_attention_mask = incremental_to_binary_attention_mask(
next_image_attention_mask, num_classes=max_num_images
)
result = {
"input_ids": output_input_ids,
"attention_mask": output_attention_masks,
"image_attention_mask": image_attention_mask,
"next_image_attention_mask": next_image_attention_mask,
"num_images": torch.tensor(output_num_images),
"num_text_tokens": torch.tensor(output_num_text_tokens),
}
if is_raw_images:
result["pixel_values"] = output_images
else:
result["image_embeddings"] = output_images
return result
def split_and_pad_pmd(
sample,
tokenizer,
max_seq_len,
image_transform,
max_num_images,
prefix_seed=(0, 0),
is_blurred_fn=None,
blur_threshold=0.0,
prob_image_at_end=0.5, # If 1, the <image> token is always added at the end of the text
# If set to -1, all padding will be tolerated. If set to 0, no padding will be tolerated.
padding_tolerance=-1,
add_begin_of_doc_token=False,
add_end_of_doc_token=True,
):
if is_blurred_fn is None:
is_blurred_fn = fft_blur_detection
text_batch = sample["text"]
image_batch = sample.get("image_embedding", None)
is_raw_images = False
if image_batch is None:
image_batch = sample.get("image", None)
is_raw_images = True
filtered_image_batch = []
filtered_input_ids = []
# Define whether for the current PMD batch whether the images will be at the start or at the end.
rng = np.random.default_rng(seed=list(prefix_seed))
is_image_at_end = False
# rng.random is between 0 and 1, so if prob_image_at_end is 1, random value will
# always be less than `prob_image_at_end` and `is_image_at_end` will always be True.
# This means that images will always be at the end of the text.
if rng.random() < prob_image_at_end:
is_image_at_end = True
for image, text in zip(image_batch, text_batch):
if text is None or image is None:
continue
if is_raw_images and is_blurred_fn(image, threshold=blur_threshold):
continue
sample_text = f"{FAKE_TOKEN_AROUND_IMAGE_V2}{IMAGE_TOKEN}{FAKE_TOKEN_AROUND_IMAGE_V2}"
# Remove trailing and leading whitespaces, including newlines and tabs
text = text.strip()
if is_image_at_end:
sample_text = f"{text}{sample_text}"
else:
sample_text = f"{sample_text}{text}"
sample_input_ids = tokenizer.encode(sample_text, add_special_tokens=False)
if add_end_of_doc_token:
sample_input_ids += [tokenizer.eos_token_id]
if add_begin_of_doc_token:
sample_input_ids = [tokenizer.bos_token_id] + sample_input_ids
filtered_image_batch.append(image)
filtered_input_ids.append(sample_input_ids)
# sort by length of text and save same length elements in a mapping so we
# can retrieve candidates later.
filtered_image_batch, filtered_input_ids = zip(
*sorted(zip(filtered_image_batch, filtered_input_ids), key=lambda x: len(x[1]))
)
mapping_by_len = OrderedDict()
for i, sample_input_ids in enumerate(filtered_input_ids):
if len(sample_input_ids) not in mapping_by_len:
mapping_by_len[len(sample_input_ids)] = []
mapping_by_len[len(sample_input_ids)].append((filtered_image_batch[i], sample_input_ids))
all_images = []
all_texts = []
all_attention_masks = []
all_num_images = []
all_num_text_tokens = []
current_text = []
current_images = []
while True:
current_lens = list(mapping_by_len.keys())
if len(current_text) > 0:
# Now we try to do a binary search to find the biggest sequence that
# we can fit into the current sequence.
# This will eventually use up bigger sequences faster which is good
# and leave smaller sequences to pack with each other later.
diff = max_seq_len - len(current_text)
if len(current_lens) == 0:
possible_index = -1
else:
possible_index = bisect_left(current_lens, diff)
if possible_index == len(current_lens) or current_lens[possible_index] != diff:
possible_index -= 1
if possible_index >= 0:
best_possible_length = current_lens[possible_index]
image, sample_input_ids = mapping_by_len[best_possible_length].pop(0)
# If we have used up all the samples of a certain length, remove
# that length from the mapping.
if len(mapping_by_len[best_possible_length]) == 0:
del mapping_by_len[best_possible_length]
current_text.extend(sample_input_ids)
if is_raw_images:
current_images.append(image_transform(image))
else:
current_images.append(torch.tensor(image))
elif diff > padding_tolerance and padding_tolerance != -1:
# If we are here, it means that we still have padding left
# and we have exhausted our current unique options that will allow us to
# fill this sequence completely.
# So, we will try to fill the sequence with whatever we get from the unchanged
# copy of all sequences.
while diff > padding_tolerance:
# Find a random sequence to fit
# Why we need to add more stuff to prefix seed?
# prefix_seed will be same in the same batch which means that it might sample
# same thing again and again if there are multiple cases of padding in the
# same batch which means we need to make this part as random as possible.
rng = np.random.default_rng(
prefix_seed
+ (
diff,
len(current_text),
len(all_texts),
all_num_images,
)
)
choice = rng.choice(range(len(filtered_input_ids)))
image, sample_input_ids = filtered_image_batch[choice], filtered_input_ids[choice]
current_text.extend(sample_input_ids)
if is_raw_images:
current_images.append(image_transform(image))
else:
current_images.append(torch.tensor(image))
diff = max_seq_len - len(current_text)
# In the next top-level while loop iteration, this should go into the else
# clause which should also handle the sequences longer than max_seq_len
else:
current_images = torch.stack(current_images)
padded_image_tensor = torch.zeros(max_num_images, *current_images.size()[1:])
padded_image_tensor[: current_images.size(0)] = current_images[
: min(max_num_images, current_images.size(0))
]
all_num_images.append(min(max_num_images, current_images.size(0)))
all_images.append(padded_image_tensor)
padded_input_ids = torch.full((max_seq_len,), tokenizer.pad_token_id)
current_max_len = min(max_seq_len, len(current_text))
padded_input_ids[:current_max_len] = torch.tensor(current_text)[:current_max_len]
all_num_text_tokens.append(current_max_len)
all_texts.append(padded_input_ids)
attention_mask = torch.zeros((max_seq_len,), dtype=torch.long)
attention_mask[: len(current_text)] = 1
all_attention_masks.append(attention_mask)
# Make sure to reset the current text and images.
current_images = []
current_text = []
if len(current_lens) == 0:
break
else:
# A case where we might not have any samples left over after the initial filtering step.
if len(current_lens) == 0:
break
image, sample_input_ids = mapping_by_len[current_lens[-1]].pop(0)
if len(mapping_by_len[current_lens[-1]]) == 0:
del mapping_by_len[current_lens[-1]]
current_text = sample_input_ids[:max_seq_len]
if is_raw_images:
current_images = [image_transform(image)]
else:
current_images = [torch.tensor(image)]
if len(all_images) == 0 or len(all_texts) == 0:
result = {
"input_ids": torch.tensor([], dtype=torch.long),
"attention_mask": torch.tensor([], dtype=torch.bool),
"image_attention_mask": torch.tensor([], dtype=torch.bool),
"num_images": torch.tensor([], dtype=torch.long),
"num_text_tokens": torch.tensor([], dtype=torch.long),
}
if is_raw_images:
result["pixel_values"] = torch.tensor([], dtype=torch.float32)
else:
result["image_embeddings"] = torch.tensor([], dtype=torch.float32)
return result
all_texts = torch.stack(all_texts)
all_images = torch.stack(all_images)
all_attention_masks = torch.stack(all_attention_masks)
image_attention_mask, next_image_attention_mask = image_attention_mask_for_packed_input_ids(all_texts, tokenizer)
image_attention_mask = incremental_to_binary_attention_mask(image_attention_mask, num_classes=max_num_images)
next_image_attention_mask = incremental_to_binary_attention_mask(
next_image_attention_mask, num_classes=max_num_images
)
output = {
"input_ids": all_texts,
"attention_mask": all_attention_masks,
"image_attention_mask": image_attention_mask,
"num_images": torch.tensor(all_num_images),
"num_text_tokens": torch.tensor(all_num_text_tokens),
}
if is_raw_images:
output["pixel_values"] = all_images
else:
output["image_embeddings"] = all_images
if is_image_at_end:
# Set the correct attention mask based on whether the image is at the start
# or not. When it is at the end, we need next image attention mask.
output["image_attention_mask"] = next_image_attention_mask
return output
# Copied from https://github.com/google-research/text-to-text-transfer-transformer/blob/main/t5/data/preprocessors.py
def random_spans_helper(
inputs_length,
noise_density,
mean_noise_span_length,
extra_tokens_per_span_inputs,
extra_tokens_per_span_targets,
verbose=False,
):
"""Training parameters to avoid padding with random_spans_noise_mask.
When training a model with random_spans_noise_mask, we would like to set the
other training hyperparmeters in a way that avoids padding. This function
helps us compute these hyperparameters.
We assume that each noise span in the input is replaced by
extra_tokens_per_span_inputs sentinel tokens, and each non-noise span in the
targets is replaced by extra_tokens_per_span_targets sentinel tokens.
This function tells us the required number of tokens in the raw example (for
split_tokens()) as well as the length of the encoded targets.
Note that this function assumes the inputs and targets will have EOS appended
and includes that in the reported length.
Args:
inputs_length: an integer - desired length of the tokenized inputs sequence
noise_density: a float
mean_noise_span_length: a float
extra_tokens_per_span_inputs: an integer
extra_tokens_per_span_targets: an integer
verbose: a bool indicating whether to log sequence lengths
Returns:
tokens_length: length of original text in tokens
targets_length: an integer - length in tokens of encoded targets sequence
"""
if extra_tokens_per_span_inputs != 1:
raise NotImplementedError(
"extra_tokens_per_span_inputs != 1 not supported yet. You need to check"
" `get_model_tflops_per_batch_per_gpu` of `VT5ForConditionalGeneration` if you change it."
)
if extra_tokens_per_span_targets != 1:
raise NotImplementedError(
"extra_tokens_per_span_targets != 1 not supported yet. You need to check"
" `get_model_tflops_per_batch_per_gpu` of `VT5ForConditionalGeneration` if you change it."
)
def _tokens_length_to_inputs_length_targets_length(tokens_length):
num_noise_tokens = int(round(tokens_length * noise_density))
num_nonnoise_tokens = tokens_length - num_noise_tokens
num_noise_spans = int(round(num_noise_tokens / mean_noise_span_length))
# inputs contain all nonnoise tokens, sentinels for all noise spans
# and one EOS token.
return (
num_nonnoise_tokens + num_noise_spans * extra_tokens_per_span_inputs + 1,
num_noise_tokens + num_noise_spans * extra_tokens_per_span_targets + 1,
)
tokens_length = inputs_length - 1
while _tokens_length_to_inputs_length_targets_length(tokens_length + 1)[0] <= inputs_length:
tokens_length += 1
inputs_length, targets_length = _tokens_length_to_inputs_length_targets_length(tokens_length)
# minor hack to get the targets length to be equal to inputs length
# which is more likely to have been set to a nice round number.
if noise_density == 0.5 and targets_length > inputs_length:
tokens_length -= 1
targets_length -= 1
if verbose:
logging.info(
"tokens_length=%s inputs_length=%s targets_length=%s noise_density=%s mean_noise_span_length=%s ",
tokens_length,
inputs_length,
targets_length,
noise_density,
mean_noise_span_length,
)
return tokens_length, targets_length
|