File size: 8,855 Bytes
e7d3e35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
# coding=utf-8
# Copyright 2022 EleutherAI and the HuggingFace Inc. team. All rights reserved.
#
# This code is based on EleutherAI's GPT-NeoX library and the GPT-NeoX
# and OPT implementations in this library. It has been modified from its
# original forms to accommodate minor architectural differences compared
# to GPT-NeoX and OPT used by the Meta AI team that trained the model.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
""" LLaMA model configuration"""
import os
from typing import Tuple, Union

from transformers import AutoConfig
from transformers.configuration_utils import PretrainedConfig
from transformers.utils import logging


logger = logging.get_logger(__name__)

LLAMA_PRETRAINED_CONFIG_ARCHIVE_MAP = {}


class VLlamaConfig(PretrainedConfig):
    r"""
    TODO: update docstring with respect to new arguments

    This is the configuration class to store the configuration of a [`~LlamaModel`]. It is used to instantiate an LLaMA
    model according to the specified arguments, defining the model architecture. Instantiating a configuration with the
    defaults will yield a similar configuration to that of the LLaMA-7B.

    Configuration objects inherit from [`PretrainedConfig`] and can be used to control the model outputs. Read the
    documentation from [`PretrainedConfig`] for more information.


    Args:
        vocab_size (`int`, *optional*, defaults to 32000):
            Vocabulary size of the LLaMA model. Defines the number of different tokens that can be represented by the
            `inputs_ids` passed when calling [`~LlamaModel`]
        hidden_size (`int`, *optional*, defaults to 4096):
            Dimension of the hidden representations.
        intermediate_size (`int`, *optional*, defaults to 11008):
            Dimension of the MLP representations.
        num_hidden_layers (`int`, *optional*, defaults to 32):
            Number of hidden layers in the Transformer encoder.
        num_attention_heads (`int`, *optional*, defaults to 32):
            Number of attention heads for each attention layer in the Transformer encoder.
        hidden_act (`str` or `function`, *optional*, defaults to `"silu"`):
            The non-linear activation function (function or string) in the decoder.
        initializer_range (`float`, *optional*, defaults to 0.02):
            The standard deviation of the truncated_normal_initializer for initializing all weight matrices.
        rms_norm_eps (`float`, *optional*, defaults to 1e-12):
            The epsilon used by the rms normalization layers.
        use_cache (`bool`, *optional*, defaults to `True`):
            Whether or not the model should return the last key/values attentions (not used by all models). Only
            relevant if `config.is_decoder=True`.
        tie_word_embeddings(`bool`, *optional*, defaults to `False`):
            Whether to tie weight embeddings
        Example:

    ```python
    >>> from transformers import LlamaModel, LlamaConfig

    >>> # Initializing a LLaMA llama-7b style configuration
    >>> configuration = LlamaConfig()

    >>> # Initializing a model from the llama-7b style configuration
    >>> model = LlamaModel(configuration)

    >>> # Accessing the model configuration
    >>> configuration = model.config
    ```"""
    model_type = "vllama"

    def __init__(
        self,
        vocab_size=32000,
        additional_vocab_size=0,
        hidden_size=4096,
        intermediate_size=11008,
        num_hidden_layers=32,
        num_attention_heads=32,
        dropout=0.0,
        hidden_act="silu",
        initializer_range=0.02,
        alpha_initializer="ones",
        alphas_initializer_range=0.0,
        alpha_type="vector",
        rms_norm_eps=1e-6,
        use_cache=True,
        pad_token_id=0,
        bos_token_id=1,
        eos_token_id=2,
        tie_word_embeddings=False,
        cross_layer_interval=1,
        cross_layer_activation_function="swiglu",
        qk_layer_norms=False,
        qk_layer_norms_perceiver=False,
        freeze_text_layers=True,
        freeze_text_module_exceptions=[],
        freeze_lm_head=False,
        freeze_vision_layers=True,
        freeze_vision_module_exceptions=[],
        vision_model_name="google/vit-base-patch16-224",
        vision_model_params="{}",
        vision_embed_dim=768,
        vision_image_size=224,
        use_resampler=False,
        resampler_n_latents=64,
        resampler_depth=6,
        resampler_n_heads=16,
        resampler_head_dim=96,
        **kwargs,
    ):
        self.vocab_size = vocab_size
        self.additional_vocab_size = additional_vocab_size
        self.hidden_size = hidden_size
        self.intermediate_size = intermediate_size
        self.num_hidden_layers = num_hidden_layers
        self.num_attention_heads = num_attention_heads
        self.dropout = dropout
        self.hidden_act = hidden_act
        self.initializer_range = initializer_range
        self.alpha_initializer = alpha_initializer
        self.alphas_initializer_range = alphas_initializer_range
        self.alpha_type = alpha_type
        self.rms_norm_eps = rms_norm_eps
        self.use_cache = use_cache
        super().__init__(
            pad_token_id=pad_token_id,
            bos_token_id=bos_token_id,
            eos_token_id=eos_token_id,
            tie_word_embeddings=tie_word_embeddings,
            **kwargs,
        )

        self.cross_layer_interval = cross_layer_interval
        self.cross_layer_activation_function = cross_layer_activation_function
        self.qk_layer_norms = qk_layer_norms
        self.qk_layer_norms_perceiver = qk_layer_norms_perceiver
        self.freeze_vision_layers = freeze_vision_layers
        self.vision_model_name = vision_model_name
        self.vision_model_params = vision_model_params

        self.freeze_text_layers = freeze_text_layers
        self.freeze_text_module_exceptions = freeze_text_module_exceptions
        self.freeze_vision_module_exceptions = freeze_vision_module_exceptions
        self.freeze_lm_head = freeze_lm_head

        self.vision_embed_dim = vision_embed_dim
        self.vision_image_size = vision_image_size

        # Resampler params
        self.use_resampler = use_resampler
        self.resampler_n_latents = resampler_n_latents
        self.resampler_depth = resampler_depth
        self.resampler_n_heads = resampler_n_heads
        self.resampler_head_dim = resampler_head_dim

        # IMPORTANT: Do not do any __init__ args-based checks in the constructor, since
        # PretrainedConfig.from_dict first instantiates the class with the config dict and only then
        # updates the config object with `kwargs` from from_pretrained, so during the instantiation
        # of this object many attributes have default values and haven't yet been overridden.
        # Do any required checks inside `from_pretrained` once the superclass' `from_pretrained` was run.

    def check_compatibilities(self):
        vision_model_params = eval(self.vision_model_params)
        config = AutoConfig.from_pretrained(self.vision_model_name, **vision_model_params)
        if hasattr(config, "vision_config"):
            vision_config = config.vision_config
        else:
            vision_config = config
        vision_embed_dim = vision_config.hidden_size
        if self.vision_embed_dim != vision_embed_dim:
            raise ValueError(
                f"vision_embed_dim ({self.vision_embed_dim}) must match the hidden size of the vision model"
                f" ({vision_embed_dim})"
            )
        vision_image_size = vision_config.image_size
        if self.vision_image_size != vision_image_size:
            raise ValueError(
                f"vision_image_size ({self.vision_image_size}) must match the hidden size of the vision model"
                f" ({vision_image_size})"
            )

    @classmethod
    def from_pretrained(cls, pretrained_model_name_or_path: Union[str, os.PathLike], **kwargs) -> "PretrainedConfig":
        outputs = super(VLlamaConfig, cls).from_pretrained(pretrained_model_name_or_path, **kwargs)
        if isinstance(outputs, Tuple):
            # When called with return_unused_kwargs=True, the first item will be the config
            outputs[0].check_compatibilities()
        else:
            outputs.check_compatibilities()
        return outputs