File size: 12,620 Bytes
c3fdfdd 71882f2 0793539 dc93c04 c3fdfdd dc93c04 f9bf036 dc93c04 71882f2 dc93c04 71882f2 dc93c04 71882f2 dc93c04 f9bf036 dc93c04 f9bf036 c3fdfdd 0793539 dc93c04 71882f2 dc93c04 71882f2 dc93c04 71882f2 c3fdfdd dc93c04 71882f2 c3fdfdd 0793539 c3fdfdd 71882f2 c3fdfdd 71882f2 c3fdfdd 0793539 c3fdfdd 71882f2 c3fdfdd 71882f2 c3fdfdd 0793539 c3fdfdd 71882f2 c3fdfdd 71882f2 c3fdfdd 71882f2 c3fdfdd 71882f2 c3fdfdd dc93c04 71882f2 dc93c04 71882f2 dc93c04 71882f2 3bdea3c dc93c04 71882f2 dc93c04 71882f2 dc93c04 71882f2 dc93c04 71882f2 c3fdfdd 71882f2 3bdea3c 71882f2 c3fdfdd dc93c04 71882f2 c3fdfdd dc93c04 0793539 71882f2 dc93c04 0793539 c3fdfdd 0793539 dc93c04 3bdea3c 71882f2 c3fdfdd 71882f2 2967cfa 71882f2 0793539 2967cfa 71882f2 dc93c04 71882f2 dc93c04 c3fdfdd 71882f2 2967cfa 71882f2 0793539 71882f2 3bdea3c c3fdfdd f9bf036 dc93c04 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 |
from crewai import Agent, Task, Crew
import gradio as gr
import asyncio
from typing import List, Dict, Any, Generator
from langchain_openai import ChatOpenAI
import queue
import threading
import os
class AgentMessageQueue:
def __init__(self):
self.message_queue = queue.Queue()
self.last_agent = None
def add_message(self, message: Dict):
print(f"Adding message to queue: {message}") # Debug print
self.message_queue.put(message)
def get_messages(self) -> List[Dict]:
messages = []
while not self.message_queue.empty():
messages.append(self.message_queue.get())
return messages
class ArticleCrew:
def __init__(self, api_key: str = None):
self.api_key = api_key
self.message_queue = AgentMessageQueue()
self.planner = None
self.writer = None
self.editor = None
self.current_agent = None
self.final_article = None
def initialize_agents(self, topic: str):
if not self.api_key:
raise ValueError("OpenAI API key is required")
os.environ["OPENAI_API_KEY"] = self.api_key
llm = ChatOpenAI(temperature=0.7, model="gpt-4")
self.planner = Agent(
role="Content Planner",
goal=f"Plan engaging and factually accurate content on {topic}",
backstory="Expert content planner with focus on creating engaging outlines",
allow_delegation=False,
verbose=True,
llm=llm
)
self.writer = Agent(
role="Content Writer",
goal=f"Write insightful and factually accurate piece about {topic}",
backstory="Expert content writer with focus on engaging articles",
allow_delegation=False,
verbose=True,
llm=llm
)
self.editor = Agent(
role="Editor",
goal="Polish and refine the article",
backstory="Expert editor with eye for detail and clarity",
allow_delegation=False,
verbose=True,
llm=llm
)
def create_tasks(self, topic: str) -> List[Task]:
planner_task = Task(
description=f"""Create a detailed content plan for an article about {topic} by:
1. Prioritizing the latest trends, key players, and noteworthy news
2. Identifying the target audience, considering their interests and pain points
3. Developing a detailed content outline including introduction, key points, and call to action
4. Including SEO keywords and relevant data or sources""",
expected_output="A comprehensive content plan with outline, keywords, and target audience analysis",
agent=self.planner
)
writer_task = Task(
description="""Based on the provided content plan:
1. Use the content plan to craft a compelling blog post
2. Incorporate SEO keywords naturally
3. Ensure sections/subtitles are properly named in an engaging manner
4. Create proper structure with introduction, body, and conclusion
5. Proofread for grammatical errors""",
expected_output="A well-written article draft following the content plan",
agent=self.writer
)
editor_task = Task(
description="""Review the written article by:
1. Checking for clarity and coherence
2. Correcting any grammatical errors and typos
3. Ensuring consistent tone and style
4. Verifying proper formatting and structure""",
expected_output="A polished, final version of the article ready for publication",
agent=self.editor
)
return [planner_task, writer_task, editor_task]
async def process_article(self, topic: str) -> Generator[List[Dict], None, None]:
def add_agent_messages(agent_name: str, tasks: str, emoji: str = "π€"):
# Add agent header
self.message_queue.add_message({
"role": "assistant",
"content": agent_name,
"metadata": {"title": f"{emoji} {agent_name}"}
})
# Add task description
self.message_queue.add_message({
"role": "assistant",
"content": tasks,
"metadata": {"title": f"π Task for {agent_name}"}
})
def setup_next_agent(current_agent: str) -> None:
agent_sequence = {
"Content Planner": ("Content Writer", """1. Use the content plan to craft a compelling blog post
2. Incorporate SEO keywords naturally
3. Ensure sections/subtitles are properly named in an engaging manner
4. Create proper structure with introduction, body, and conclusion
5. Proofread for grammatical errors"""),
"Content Writer": ("Editor", """1. Review the article for clarity and coherence
2. Check for grammatical errors and typos
3. Ensure consistent tone and style
4. Verify proper formatting and structure""")
}
if current_agent in agent_sequence:
next_agent, tasks = agent_sequence[current_agent]
self.current_agent = next_agent
add_agent_messages(next_agent, tasks)
def task_callback(task_output) -> None:
print(f"Task callback received: {task_output}") # Debug print
# Extract content from raw output
raw_output = task_output.raw
if "## Final Answer:" in raw_output:
content = raw_output.split("## Final Answer:")[1].strip()
else:
content = raw_output.strip()
# Handle the output based on current agent
if self.current_agent == "Editor":
# Don't show editor's output with metadata
# Instead, show completion message and final article
self.message_queue.add_message({
"role": "assistant",
"content": "Final article is ready!",
"metadata": {"title": "π Final Article"}
})
# Convert common markdown patterns to Gradio-compatible markdown
formatted_content = content
# Ensure proper spacing for headers
formatted_content = formatted_content.replace("\n#", "\n\n#")
# Ensure proper spacing for lists
formatted_content = formatted_content.replace("\n-", "\n\n-")
formatted_content = formatted_content.replace("\n*", "\n\n*")
formatted_content = formatted_content.replace("\n1.", "\n\n1.")
# Ensure proper spacing for paragraphs
formatted_content = formatted_content.replace("\n\n\n", "\n\n")
# Add the final article content without metadata
self.message_queue.add_message({
"role": "assistant",
"content": formatted_content
})
else:
# For other agents, show their output with metadata
self.message_queue.add_message({
"role": "assistant",
"content": content,
"metadata": {"title": f"β¨ Output from {self.current_agent}"}
})
# Setup next agent
setup_next_agent(self.current_agent)
def step_callback(output: Any) -> None:
print(f"Step callback received: {output}") # Debug print
# We'll only use step_callback for logging purposes now
pass
try:
self.initialize_agents(topic)
self.current_agent = "Content Planner"
# Start process
yield [{
"role": "assistant",
"content": "Starting work on your article...",
"metadata": {"title": "π Process Started"}
}]
# Initialize first agent
add_agent_messages("Content Planner",
"""1. Prioritize the latest trends, key players, and noteworthy news
2. Identify the target audience, considering their interests and pain points
3. Develop a detailed content outline including introduction, key points, and call to action
4. Include SEO keywords and relevant data or sources""")
crew = Crew(
agents=[self.planner, self.writer, self.editor],
tasks=self.create_tasks(topic),
verbose=True,
step_callback=step_callback,
task_callback=task_callback
)
def run_crew():
try:
crew.kickoff()
except Exception as e:
print(f"Error in crew execution: {str(e)}") # Debug print
self.message_queue.add_message({
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "β Error"}
})
thread = threading.Thread(target=run_crew)
thread.start()
while thread.is_alive() or not self.message_queue.message_queue.empty():
messages = self.message_queue.get_messages()
if messages:
print(f"Yielding messages: {messages}") # Debug print
yield messages
await asyncio.sleep(0.1)
except Exception as e:
print(f"Error in process_article: {str(e)}") # Debug print
yield [{
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "β Error"}
}]
# [Rest of the code remains the same]
def create_demo():
article_crew = None
with gr.Blocks(theme=gr.themes.Soft()) as demo:
gr.Markdown("# π AI Article Writing Crew")
openai_api_key = gr.Textbox(
label='OpenAI API Key',
type='password',
placeholder='Enter your OpenAI API key...',
interactive=True
)
chatbot = gr.Chatbot(
label="Writing Process",
height=700,
type="messages",
show_label=True,
visible=False,
avatar_images=(None, "https://avatars.githubusercontent.com/u/170677839?v=4"),
render_markdown=True # Enable markdown rendering
)
with gr.Row(equal_height=True):
topic = gr.Textbox(
label="Article Topic",
placeholder="Enter topic...",
scale=4,
visible=False
)
btn = gr.Button("Write Article", variant="primary", scale=1, visible=False)
async def process_input(topic, history, api_key):
nonlocal article_crew
if not api_key:
history = history or []
history.append({
"role": "assistant",
"content": "Please provide an OpenAI API key.",
"metadata": {"title": "β Error"}
})
yield history
return
if article_crew is None:
article_crew = ArticleCrew(api_key=api_key)
history = history or []
history.append({"role": "user", "content": f"Write an article about: {topic}"})
yield history
try:
async for messages in article_crew.process_article(topic):
history.extend(messages)
yield history
except Exception as e:
history.append({
"role": "assistant",
"content": f"An error occurred: {str(e)}",
"metadata": {"title": "β Error"}
})
yield history
def show_interface():
return {
openai_api_key: gr.Textbox(visible=False),
chatbot: gr.Chatbot(visible=True),
topic: gr.Textbox(visible=True),
btn: gr.Button(visible=True)
}
openai_api_key.submit(show_interface, None, [openai_api_key, chatbot, topic, btn])
btn.click(process_input, [topic, chatbot, openai_api_key], [chatbot])
topic.submit(process_input, [topic, chatbot, openai_api_key], [chatbot])
return demo
if __name__ == "__main__":
demo = create_demo()
demo.queue()
demo.launch(debug=True) |