File size: 7,501 Bytes
a36cede
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os

# gradio for visual demo
import gradio as gr

# transformers for easy access to nnet
os.system("pip install git+https://github.com/huggingface/transformers.git")
os.system("pip install datasets")
os.system("pip install scipy")
os.system("pip install torch")

from transformers import AutoImageProcessor, AutoModelForImageClassification, DPTForDepthEstimation, Mask2FormerForUniversalSegmentation
import torch
import numpy as np
from PIL import Image
import requests
from collections import defaultdict

palette = np.asarray([
    [0, 0, 0],
    [120, 120, 120],
    [180, 120, 120],
    [6, 230, 230],
    [80, 50, 50],
    [4, 200, 3],
    [120, 120, 80],
    [140, 140, 140],
    [204, 5, 255],
    [230, 230, 230],
    [4, 250, 7],
    [224, 5, 255],
    [235, 255, 7],
    [150, 5, 61],
    [120, 120, 70],
    [8, 255, 51],
    [255, 6, 82],
    [143, 255, 140],
    [204, 255, 4],
    [255, 51, 7],
    [204, 70, 3],
    [0, 102, 200],
    [61, 230, 250],
    [255, 6, 51],
    [11, 102, 255],
    [255, 7, 71],
    [255, 9, 224],
    [9, 7, 230],
    [220, 220, 220],
    [255, 9, 92],
    [112, 9, 255],
    [8, 255, 214],
    [7, 255, 224],
    [255, 184, 6],
    [10, 255, 71],
    [255, 41, 10],
    [7, 255, 255],
    [224, 255, 8],
    [102, 8, 255],
    [255, 61, 6],
    [255, 194, 7],
    [255, 122, 8],
    [0, 255, 20],
    [255, 8, 41],
    [255, 5, 153],
    [6, 51, 255],
    [235, 12, 255],
    [160, 150, 20],
    [0, 163, 255],
    [140, 140, 140],
    [250, 10, 15],
    [20, 255, 0],
    [31, 255, 0],
    [255, 31, 0],
    [255, 224, 0],
    [153, 255, 0],
    [0, 0, 255],
    [255, 71, 0],
    [0, 235, 255],
    [0, 173, 255],
    [31, 0, 255],
    [11, 200, 200],
    [255, 82, 0],
    [0, 255, 245],
    [0, 61, 255],
    [0, 255, 112],
    [0, 255, 133],
    [255, 0, 0],
    [255, 163, 0],
    [255, 102, 0],
    [194, 255, 0],
    [0, 143, 255],
    [51, 255, 0],
    [0, 82, 255],
    [0, 255, 41],
    [0, 255, 173],
    [10, 0, 255],
    [173, 255, 0],
    [0, 255, 153],
    [255, 92, 0],
    [255, 0, 255],
    [255, 0, 245],
    [255, 0, 102],
    [255, 173, 0],
    [255, 0, 20],
    [255, 184, 184],
    [0, 31, 255],
    [0, 255, 61],
    [0, 71, 255],
    [255, 0, 204],
    [0, 255, 194],
    [0, 255, 82],
    [0, 10, 255],
    [0, 112, 255],
    [51, 0, 255],
    [0, 194, 255],
    [0, 122, 255],
    [0, 255, 163],
    [255, 153, 0],
    [0, 255, 10],
    [255, 112, 0],
    [143, 255, 0],
    [82, 0, 255],
    [163, 255, 0],
    [255, 235, 0],
    [8, 184, 170],
    [133, 0, 255],
    [0, 255, 92],
    [184, 0, 255],
    [255, 0, 31],
    [0, 184, 255],
    [0, 214, 255],
    [255, 0, 112],
    [92, 255, 0],
    [0, 224, 255],
    [112, 224, 255],
    [70, 184, 160],
    [163, 0, 255],
    [153, 0, 255],
    [71, 255, 0],
    [255, 0, 163],
    [255, 204, 0],
    [255, 0, 143],
    [0, 255, 235],
    [133, 255, 0],
    [255, 0, 235],
    [245, 0, 255],
    [255, 0, 122],
    [255, 245, 0],
    [10, 190, 212],
    [214, 255, 0],
    [0, 204, 255],
    [20, 0, 255],
    [255, 255, 0],
    [0, 153, 255],
    [0, 41, 255],
    [0, 255, 204],
    [41, 0, 255],
    [41, 255, 0],
    [173, 0, 255],
    [0, 245, 255],
    [71, 0, 255],
    [122, 0, 255],
    [0, 255, 184],
    [0, 92, 255],
    [184, 255, 0],
    [0, 133, 255],
    [255, 214, 0],
    [25, 194, 194],
    [102, 255, 0],
    [92, 0, 255],
])

depth_image_processor = AutoImageProcessor.from_pretrained("facebook/dpt-dinov2-small-nyu")
depth_model = DPTForDepthEstimation.from_pretrained("facebook/dpt-dinov2-small-nyu")

def compute_depth(img):
    # prepare image for the model
    inputs = depth_image_processor(images=img, return_tensors="pt")

    with torch.no_grad():
        outputs = depth_model(**inputs)
        predicted_depth = outputs.predicted_depth

    # interpolate to original size
    prediction = torch.nn.functional.interpolate(
        predicted_depth.unsqueeze(1),
        size=img.size[::-1],
        mode="bicubic",
        align_corners=False,
    )

    # visualize the prediction
    output = prediction.squeeze().cpu().numpy()
    formatted = (output * 255 / np.max(output)).astype("uint8")
    depth = Image.fromarray(formatted)
    return [depth, "depth"]

clas_processor = AutoImageProcessor.from_pretrained('facebook/dinov2-small-imagenet1k-1-layer')
clas_model = AutoModelForImageClassification.from_pretrained('facebook/dinov2-small-imagenet1k-1-layer')

def compute_clas(img):
    inputs = clas_processor(images=img, return_tensors="pt")
    outputs = clas_model(**inputs)
    logits = outputs.logits
    predicted_class_idx = logits.argmax(-1).item()
    return[img, clas_model.config.id2label[predicted_class_idx]]

m2f_processor = AutoImageProcessor.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")
m2f_model = Mask2FormerForUniversalSegmentation.from_pretrained("facebook/mask2former-swin-base-coco-panoptic")

def seg2sem(seg):
    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3

    handles = []
    for label, color in enumerate(palette):
        color_seg[seg == label, :] = color
        if (seg == label).count_nonzero() > 0:
            handles.append(m2f_model.config.id2label[label]) 
            handles.append(color)

    color_seg = color_seg.astype(np.uint8)
    image = Image.fromarray(color_seg)
    
    return [image,handles]
    
def seg2pano(seg, segments_info):
    color_seg = np.zeros((seg.shape[0], seg.shape[1], 3), dtype=np.uint8) # height, width, 3

    handles = []
    for label, color in enumerate(palette):
        color_seg[seg == label, :] = color

    color_seg = color_seg.astype(np.uint8)
    image = Image.fromarray(color_seg)
    
    instances_counter = defaultdict(int)
    handles = []
    for segment in segments_info:
        segment_id = segment['id']
        segment_label_id = segment['label_id']
        segment_label = m2f_model.config.id2label[segment_label_id]
        label = f"{segment_label}-{instances_counter[segment_label_id]}"
        instances_counter[segment_label_id] += 1
        color = palette[segment_id]
        handles.append(label)
        handles.append(color)
    return [image,handles]

def compute_m2f_sem_seg(img):
    inputs = m2f_processor(images=img, return_tensors="pt")
    
    with torch.no_grad():
        outputs = m2f_model(**inputs)

    seg = m2f_processor.post_process_semantic_segmentation(
        outputs, target_sizes=[img.size[::-1]]
    )[0]

    return seg2sem(seg)

def compute_m2f_pano_seg(img):
    inputs = m2f_processor(images=img, return_tensors="pt")
    
    with torch.no_grad():
        outputs = m2f_model(**inputs)

    seg = m2f_processor.post_process_panoptic_segmentation(
        outputs, target_sizes=[img.size[::-1]]
    )[0]

    return seg2pano(seg["segmentation"], seg["segments_info"])

labels = ["Dinov2 - Depth", "Dinov2 - Classification", "M2F - Semantic Segmentation", "M2F - Panoptic Segmentation"]

# main function
def detect(img, application):
    if application == labels[0]:
        return compute_depth(img)
    elif application == labels[1]:
        return compute_clas(img)
    elif application == labels[2]:
        return compute_m2f_sem_seg(img)
    elif application == labels[3]:
        return compute_m2f_pano_seg(img)
    return img
    
# visual gradio interface
iface = gr.Interface(fn=detect, inputs=[gr.Image(type="pil"), gr.Radio(labels, label="Application")], outputs=[gr.Image(type="pil"), gr.Textbox()])
iface.launch(debug=True)