Spaces:
Runtime error
Runtime error
File size: 15,412 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 |
import torch
from torch_geometric.nn import MessagePassing
from torch_geometric.utils import add_self_loops, degree, softmax, to_dense_batch
from torch_geometric.nn import global_add_pool, global_mean_pool, global_max_pool, GlobalAttention, Set2Set
import torch.nn.functional as F
# from torch_scatter import scatter_add
from torch_geometric.nn.inits import glorot, zeros
num_atom_type = 120 #including the extra mask tokens
num_chirality_tag = 3
num_bond_type = 6 #including aromatic and self-loop edge, and extra masked tokens
num_bond_direction = 3
class GINConv(MessagePassing):
"""
Extension of GIN aggregation to incorporate edge information by concatenation.
Args:
emb_dim (int): dimensionality of embeddings for nodes and edges.
embed_input (bool): whether to embed input or not.
See https://arxiv.org/abs/1810.00826
"""
def __init__(self, emb_dim, aggr = "add"):
super(GINConv, self).__init__(aggr = "add")
#multi-layer perceptron
self.mlp = torch.nn.Sequential(torch.nn.Linear(emb_dim, 2*emb_dim), torch.nn.ReLU(), torch.nn.Linear(2*emb_dim, emb_dim))
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, emb_dim)
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, emb_dim)
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data)
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data)
self.aggr = aggr
def forward(self, x, edge_index, edge_attr):
#add self loops in the edge space
# print('--------------------')
# print('x:', x.shape)
# print('edge_index:',edge_index.shape)
edge_index, edge_attr = add_self_loops(edge_index, edge_attr, fill_value=0, num_nodes = x.size(0))
#add features corresponding to self-loop edges.
# self_loop_attr = torch.zeros(x.size(0), 2)
# self_loop_attr[:,0] = 4 #bond type for self-loop edge
# self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype)
# print('edge_attr:',edge_attr.shape)
# print('self_loop_attr:',self_loop_attr.shape)
# print('--------------------')
# edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0)
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1])
return self.propagate(edge_index, x=x, edge_attr=edge_embeddings)
def message(self, x_j, edge_attr):
return x_j + edge_attr
def update(self, aggr_out):
return self.mlp(aggr_out)
class GCNConv(MessagePassing):
def __init__(self, emb_dim, aggr = "add"):
super(GCNConv, self).__init__()
self.emb_dim = emb_dim
self.linear = torch.nn.Linear(emb_dim, emb_dim)
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, emb_dim)
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, emb_dim)
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data)
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data)
self.aggr = aggr
def norm(self, edge_index, num_nodes, dtype):
### assuming that self-loops have been already added in edge_index
edge_weight = torch.ones((edge_index.size(1), ), dtype=dtype,
device=edge_index.device)
row, col = edge_index
deg = scatter_add(edge_weight, row, dim=0, dim_size=num_nodes)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
return deg_inv_sqrt[row] * edge_weight * deg_inv_sqrt[col]
def forward(self, x, edge_index, edge_attr):
#add self loops in the edge space
edge_index = add_self_loops(edge_index, num_nodes = x.size(0))
#add features corresponding to self-loop edges.
self_loop_attr = torch.zeros(x.size(0), 2)
self_loop_attr[:,0] = 4 #bond type for self-loop edge
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype)
edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0)
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1])
norm = self.norm(edge_index, x.size(0), x.dtype)
x = self.linear(x)
return self.propagate(self.aggr, edge_index, x=x, edge_attr=edge_embeddings, norm = norm)
def message(self, x_j, edge_attr, norm):
return norm.view(-1, 1) * (x_j + edge_attr)
class GATConv(MessagePassing):
def __init__(self, emb_dim, heads=2, negative_slope=0.2, aggr = "add"):
super(GATConv, self).__init__()
self.aggr = aggr
self.emb_dim = emb_dim
self.heads = heads
self.negative_slope = negative_slope
self.weight_linear = torch.nn.Linear(emb_dim, heads * emb_dim)
self.att = torch.nn.Parameter(torch.Tensor(1, heads, 2 * emb_dim))
self.bias = torch.nn.Parameter(torch.Tensor(emb_dim))
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, heads * emb_dim)
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, heads * emb_dim)
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data)
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data)
self.reset_parameters()
def reset_parameters(self):
glorot(self.att)
zeros(self.bias)
def forward(self, x, edge_index, edge_attr):
#add self loops in the edge space
edge_index = add_self_loops(edge_index, num_nodes = x.size(0))
#add features corresponding to self-loop edges.
self_loop_attr = torch.zeros(x.size(0), 2)
self_loop_attr[:,0] = 4 #bond type for self-loop edge
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype)
edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0)
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1])
x = self.weight_linear(x).view(-1, self.heads, self.emb_dim)
return self.propagate(self.aggr, edge_index, x=x, edge_attr=edge_embeddings)
def message(self, edge_index, x_i, x_j, edge_attr):
edge_attr = edge_attr.view(-1, self.heads, self.emb_dim)
x_j += edge_attr
alpha = (torch.cat([x_i, x_j], dim=-1) * self.att).sum(dim=-1)
alpha = F.leaky_relu(alpha, self.negative_slope)
alpha = softmax(alpha, edge_index[0])
return x_j * alpha.view(-1, self.heads, 1)
def update(self, aggr_out):
aggr_out = aggr_out.mean(dim=1)
aggr_out = aggr_out + self.bias
return aggr_out
class GraphSAGEConv(MessagePassing):
def __init__(self, emb_dim, aggr = "mean"):
super(GraphSAGEConv, self).__init__()
self.emb_dim = emb_dim
self.linear = torch.nn.Linear(emb_dim, emb_dim)
self.edge_embedding1 = torch.nn.Embedding(num_bond_type, emb_dim)
self.edge_embedding2 = torch.nn.Embedding(num_bond_direction, emb_dim)
torch.nn.init.xavier_uniform_(self.edge_embedding1.weight.data)
torch.nn.init.xavier_uniform_(self.edge_embedding2.weight.data)
self.aggr = aggr
def forward(self, x, edge_index, edge_attr):
#add self loops in the edge space
edge_index = add_self_loops(edge_index, num_nodes = x.size(0))
#add features corresponding to self-loop edges.
self_loop_attr = torch.zeros(x.size(0), 2)
self_loop_attr[:,0] = 4 #bond type for self-loop edge
self_loop_attr = self_loop_attr.to(edge_attr.device).to(edge_attr.dtype)
edge_attr = torch.cat((edge_attr, self_loop_attr), dim = 0)
edge_embeddings = self.edge_embedding1(edge_attr[:,0]) + self.edge_embedding2(edge_attr[:,1])
x = self.linear(x)
return self.propagate(self.aggr, edge_index, x=x, edge_attr=edge_embeddings)
def message(self, x_j, edge_attr):
return x_j + edge_attr
def update(self, aggr_out):
return F.normalize(aggr_out, p = 2, dim = -1)
class GNN(torch.nn.Module):
"""
Args:
num_layer (int): the number of GNN layers
emb_dim (int): dimensionality of embeddings
JK (str): last, concat, max or sum.
max_pool_layer (int): the layer from which we use max pool rather than add pool for neighbor aggregation
drop_ratio (float): dropout rate
gnn_type: gin, gcn, graphsage, gat
Output:
node representations
"""
def __init__(self, num_layer, emb_dim, JK = "last", drop_ratio = 0, gnn_type = "gin"):
super(GNN, self).__init__()
self.num_layer = num_layer
self.drop_ratio = drop_ratio
self.JK = JK
if self.num_layer < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
self.x_embedding1 = torch.nn.Embedding(num_atom_type, emb_dim)
self.x_embedding2 = torch.nn.Embedding(num_chirality_tag, emb_dim)
torch.nn.init.xavier_uniform_(self.x_embedding1.weight.data)
torch.nn.init.xavier_uniform_(self.x_embedding2.weight.data)
###List of MLPs
self.gnns = torch.nn.ModuleList()
for layer in range(num_layer):
if gnn_type == "gin":
self.gnns.append(GINConv(emb_dim, aggr = "add"))
elif gnn_type == "gcn":
self.gnns.append(GCNConv(emb_dim))
elif gnn_type == "gat":
self.gnns.append(GATConv(emb_dim))
elif gnn_type == "graphsage":
self.gnns.append(GraphSAGEConv(emb_dim))
self.pool = global_mean_pool
###List of batchnorms
self.batch_norms = torch.nn.ModuleList()
for layer in range(num_layer):
self.batch_norms.append(torch.nn.BatchNorm1d(emb_dim))
self.num_features = emb_dim
self.cat_grep = True
#def forward(self, x, edge_index, edge_attr):
def forward(self, *argv):
if len(argv) == 3:
x, edge_index, edge_attr = argv[0], argv[1], argv[2]
elif len(argv) == 1:
data = argv[0]
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch
else:
raise ValueError("unmatched number of arguments.")
x = self.x_embedding1(x[:,0]) + self.x_embedding2(x[:,1])
h_list = [x]
for layer in range(self.num_layer):
h = self.gnns[layer](h_list[layer], edge_index, edge_attr)
h = self.batch_norms[layer](h)
#h = F.dropout(F.relu(h), self.drop_ratio, training = self.training)
if layer == self.num_layer - 1:
#remove relu for the last layer
h = F.dropout(h, self.drop_ratio, training = self.training)
else:
h = F.dropout(F.relu(h), self.drop_ratio, training = self.training)
h_list.append(h)
### Different implementations of Jk-concat
if self.JK == "concat":
node_representation = torch.cat(h_list, dim = 1)
elif self.JK == "last":
node_representation = h_list[-1]
elif self.JK == "max":
h_list = [h.unsqueeze_(0) for h in h_list]
node_representation = torch.max(torch.cat(h_list, dim = 0), dim = 0)[0]
elif self.JK == "sum":
h_list = [h.unsqueeze_(0) for h in h_list]
node_representation = torch.sum(torch.cat(h_list, dim=0), dim=0)[0]
h_graph = self.pool(node_representation, batch) # shape = [B, D]
batch_node, batch_mask = to_dense_batch(node_representation, batch) # shape = [B, n_max, D],
batch_mask = batch_mask.bool()
if self.cat_grep:
batch_node = torch.cat((h_graph.unsqueeze(1), batch_node), dim=1) # shape = [B, n_max+1, D]
batch_mask = torch.cat([torch.ones((batch_mask.shape[0], 1), dtype=torch.bool, device=batch.device), batch_mask], dim=1)
return batch_node, batch_mask
else:
return batch_node, batch_mask, h_graph
class GNN_graphpred(torch.nn.Module):
"""
Extension of GIN to incorporate edge information by concatenation.
Args:
num_layer (int): the number of GNN layers
emb_dim (int): dimensionality of embeddings
num_tasks (int): number of tasks in multi-task learning scenario
drop_ratio (float): dropout rate
JK (str): last, concat, max or sum.
graph_pooling (str): sum, mean, max, attention, set2set
gnn_type: gin, gcn, graphsage, gat
See https://arxiv.org/abs/1810.00826
JK-net: https://arxiv.org/abs/1806.03536
"""
def __init__(self, num_layer, emb_dim, num_tasks, JK = "last", drop_ratio = 0, graph_pooling = "mean", gnn_type = "gin"):
super(GNN_graphpred, self).__init__()
self.num_layer = num_layer
self.drop_ratio = drop_ratio
self.JK = JK
self.emb_dim = emb_dim
self.num_tasks = num_tasks
if self.num_layer < 2:
raise ValueError("Number of GNN layers must be greater than 1.")
self.gnn = GNN(num_layer, emb_dim, JK, drop_ratio, gnn_type = gnn_type)
#Different kind of graph pooling
if graph_pooling == "sum":
self.pool = global_add_pool
elif graph_pooling == "mean":
self.pool = global_mean_pool
elif graph_pooling == "max":
self.pool = global_max_pool
elif graph_pooling == "attention":
if self.JK == "concat":
self.pool = GlobalAttention(gate_nn = torch.nn.Linear((self.num_layer + 1) * emb_dim, 1))
else:
self.pool = GlobalAttention(gate_nn = torch.nn.Linear(emb_dim, 1))
elif graph_pooling[:-1] == "set2set":
set2set_iter = int(graph_pooling[-1])
if self.JK == "concat":
self.pool = Set2Set((self.num_layer + 1) * emb_dim, set2set_iter)
else:
self.pool = Set2Set(emb_dim, set2set_iter)
else:
raise ValueError("Invalid graph pooling type.")
#For graph-level binary classification
if graph_pooling[:-1] == "set2set":
self.mult = 2
else:
self.mult = 1
if self.JK == "concat":
self.graph_pred_linear = torch.nn.Linear(self.mult * (self.num_layer + 1) * self.emb_dim, self.num_tasks)
else:
self.graph_pred_linear = torch.nn.Linear(self.mult * self.emb_dim, self.num_tasks)
def from_pretrained(self, model_file):
#self.gnn = GNN(self.num_layer, self.emb_dim, JK = self.JK, drop_ratio = self.drop_ratio)
missing_keys, unexpected_keys = self.gnn.load_state_dict(torch.load(model_file))
print(missing_keys)
print(unexpected_keys)
def forward(self, *argv):
if len(argv) == 4:
x, edge_index, edge_attr, batch = argv[0], argv[1], argv[2], argv[3]
elif len(argv) == 1:
data = argv[0]
x, edge_index, edge_attr, batch = data.x, data.edge_index, data.edge_attr, data.batch
else:
raise ValueError("unmatched number of arguments.")
node_representation = self.gnn(x, edge_index, edge_attr)
return self.graph_pred_linear(self.pool(node_representation, batch))
if __name__ == "__main__":
pass
|