File size: 13,049 Bytes
95f97c5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
from pytorch_lightning import LightningDataModule
import torch_geometric
# from torch_geometric.loader import DataLoader
from torch.utils.data import DataLoader
from torch_geometric.loader.dataloader import Collater
from data_provider.molecule_abstract_dataset import MoleculeAbstract
import re
from transformers import BatchEncoding

# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")

# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"

def _insert_split_marker(m: re.Match):
    """
    Applies split marker based on a regex match of special tokens such as
    [START_DNA].

    Parameters
    ----------
    n : str
        Input text to split

    Returns
    ----------
    str - the text with the split token added
    """
    start_token, _, sequence, end_token = m.groups()
    sequence = re.sub(r"(.)", fr"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
    return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"


def smiles_handler(text, mol_ph, is_gal=True):
    smiles_list = []
    for match in CUSTOM_SEQ_RE.finditer(text):
        smiles = match.group(3)
        smiles_list.append(smiles)
    if is_gal:
        text = CUSTOM_SEQ_RE.sub(r'\1\3\4%s' % (mol_ph), text)
        text = escape_custom_split_sequence(text)
        return text, smiles_list
    else:
        text = CUSTOM_SEQ_RE.sub(r'\3%s' % (mol_ph), text)
        return text, smiles_list


def escape_custom_split_sequence(text):
    """
    Applies custom splitting to the text for GALILEO's tokenization

    Parameters
    ----------
    text : str
        Input text to split

    Returns
    ----------
    str - the text with the split token added
    """
    return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)


def tokenize_and_merge_batched_qa_pairs(tokenizer, qa_pairs_list, max_length):
    tokenized_batches = {
        'input_ids': [],
        'attention_mask': []
    }
    for qa_pairs in qa_pairs_list:
        max_length_per_qa = max_length // len(qa_pairs)
        batch_input_ids = []
        batch_attention_mask = []
        for qa in qa_pairs:
            # here qa should be string
            tokens = tokenizer(qa,
                            truncation=True,
                            padding=False,
                            add_special_tokens=False,
                            max_length=max_length_per_qa,
                            return_tensors='pt',
                            return_attention_mask=True)
            batch_input_ids.extend(tokens['input_ids'].squeeze().tolist())
            batch_attention_mask.extend(tokens['attention_mask'].squeeze().tolist())

        # Pad the batch to max_length
        padding_length = max_length - len(batch_input_ids)
        batch_input_ids.extend([tokenizer.pad_token_id] * padding_length)
        batch_attention_mask.extend([0] * padding_length)

        tokenized_batches['input_ids'].append(torch.tensor(batch_input_ids).unsqueeze(0))
        tokenized_batches['attention_mask'].append(torch.tensor(batch_attention_mask).unsqueeze(0))

    tokenized_batches['input_ids'] = torch.cat(tokenized_batches['input_ids'], dim=0)
    tokenized_batches['attention_mask'] = torch.cat(tokenized_batches['attention_mask'], dim=0)

    tokenized_batch = BatchEncoding(data=tokenized_batches, tensor_type='pt')
    return tokenized_batch

class TrainCollater:
    def __init__(self, tokenizer, text_max_len, mol_ph, mol_token_id, is_gal=True, disable_graphs=False):
        self.text_max_len = text_max_len
        self.tokenizer = tokenizer
        self.collater = Collater([], [])
        self.mol_ph = mol_ph
        self.mol_token_id = mol_token_id
        self.is_gal = is_gal
        self.disable_graphs = disable_graphs

    def __call__(self, batch):
        graphs, mol_prompt, text_prompt = zip(*batch)
        if not self.disable_graphs:
            graphs = [graph for graph_batch in graphs for graph in graph_batch]
            graphs = self.collater(graphs)

        qa_pairs = []
        for mol_batch, text_batch in zip(mol_prompt, text_prompt):
            qa_list = []
            for mol_prompt, text_prompt in zip(mol_batch, text_batch):
                smiles_prompt = smiles_handler(mol_prompt, self.mol_ph, self.is_gal)[0]
                qa_list.append(f'{smiles_prompt} {text_prompt}')
            qa_pairs.append(qa_list)

        self.tokenizer.padding_side = 'right'
        qa_batch = tokenize_and_merge_batched_qa_pairs(self.tokenizer, qa_pairs, self.text_max_len)

        is_mol_token = qa_batch.input_ids == self.mol_token_id
        qa_batch['is_mol_token'] = is_mol_token

        return graphs, qa_batch

class InferenceCollater:
    def __init__(self, tokenizer, text_max_len, mol_ph, mol_token_id, is_gal=True, disable_graphs=False, last_only=False):
        self.text_max_len = text_max_len
        self.tokenizer = tokenizer
        self.collater = Collater([], [])
        self.mol_ph = mol_ph
        self.mol_token_id = mol_token_id
        self.is_gal = is_gal
        self.disable_graphs = disable_graphs
        self.last_only = last_only

    def __call__(self, batch):
        graphs, mol_prompt, text_prompt = zip(*batch)
        rxn_ids = [0 for i in range(len(mol_prompt))]
        if self.last_only:
            mol_prompt = [[mol_batch[-1]] for mol_batch in mol_prompt]
            text_prompt = [[text_batch[-1]] for text_batch in text_prompt]
            graphs = [[graph_batch[-1]] for graph_batch in graphs]
        if not self.disable_graphs:
            graphs = [graph for graph_batch in graphs for graph in graph_batch]
            graphs = self.collater(graphs)

        input_text, output_text = [], []
        for mol_batch, text_batch in zip(mol_prompt, text_prompt):
            qa_list = []
            for mol_prompt, text_prompt in list(zip(mol_batch, text_batch))[:-1]:
                smiles_prompt = smiles_handler(mol_prompt, self.mol_ph, self.is_gal)[0]
                qa_list.append(f'{smiles_prompt} {text_prompt}')
            qa_list.append(f'{smiles_handler(mol_batch[-1], self.mol_ph, self.is_gal)[0]} ')
            output_text.append(text_batch[-1])
            input_text.append(qa_list)

        self.tokenizer.padding_side = 'right'
        input_batch = tokenize_and_merge_batched_qa_pairs(self.tokenizer, input_text, self.text_max_len)

        is_mol_token = input_batch.input_ids == self.mol_token_id
        input_batch['is_mol_token'] = is_mol_token
        
        return rxn_ids, graphs, input_batch, output_text, input_text


class PretrainDM(LightningDataModule):
    def __init__(
        self,
        num_workers: int = 0,
        batch_size: int = 256,
        root: str = 'data/',
        text_max_len: int = 128,
        rxn_max_len: int = 128,
        smi_max_len: int = 128,
        tokenizer=None,
        args=None,
    ):
        super().__init__()
        self.args = args
        self.batch_size = batch_size
        self.inference_batch_size = args.inference_batch_size
        self.num_workers = num_workers
        self.text_max_len = text_max_len
        self.rxn_max_len = rxn_max_len
        self.pretrain_dataset = MoleculeAbstract(
            root,
            rxn_num=args.pretrain_rxn_num,
            rxn_batch_size=args.rxn_batch_size,
            smi_max_len=smi_max_len,
            disable_graph_cache=args.disable_graph_cache,
            context_style=args.context_style,
            disable_graphs=args.disable_graphs,
            use_caption_dataset=args.pretrain_use_caption,
            caption_batch_num=args.caption_batch_num,
            synthesis_datasetpath=args.pretrain_synthesis_path,
            synthesis_batch_num=args.synthesis_batch_num,
            reverse_ratio=args.reverse_ratio,
            enable_abstract=not args.disable_abstract,
            enable_property=not args.disable_property,
            smiles_type=args.smiles_type,
        )
        self.test_dataset = MoleculeAbstract(
            root,
            rxn_num=args.pretrain_rxn_num,
            rxn_batch_size=args.rxn_batch_size,
            smi_max_len=smi_max_len,
            disable_graph_cache=args.disable_graph_cache,
            context_style=args.context_style,
            disable_graphs=args.disable_graphs,
            use_caption_dataset=args.pretrain_use_caption,
            caption_batch_num=args.caption_batch_num,
            reverse_ratio=args.reverse_ratio,
            enable_abstract=not args.disable_abstract,
            enable_property=not args.disable_property,
            smiles_type=args.smiles_type,
            mode='test',
        )
        self.init_tokenizer(tokenizer)
        self.mol_ph_token = '<mol>' * self.args.num_query_token
        self.is_gal = args.opt_model.find('galactica') >= 0
        self.disable_graphs = args.disable_graphs
        self.last_only = args.pretrain_eval_last_only

    def init_tokenizer(self, tokenizer):
        self.tokenizer = tokenizer
        self.pretrain_dataset.tokenizer = tokenizer
        self.test_dataset.tokenizer = tokenizer
        self.mol_token_id = self.tokenizer.mol_token_id
        # self.tokenizer.mol_token_id = tokenizer("<mol>", add_special_tokens=False).input_ids[0]

    def train_dataloader(self):
        self.pretrain_dataset.reload_data_list()
        loader = DataLoader(
            self.pretrain_dataset,
            batch_size=self.batch_size,
            shuffle=True,
            num_workers=self.num_workers,
            pin_memory=False,
            drop_last=True,
            persistent_workers=True,
            collate_fn=TrainCollater(
                tokenizer=self.tokenizer,
                text_max_len=self.text_max_len,
                mol_ph=self.mol_ph_token,
                mol_token_id=self.mol_token_id,
                is_gal=self.is_gal,
                disable_graphs=self.disable_graphs,
            ),
        )
        return loader
    def val_dataloader(self):
        test_loader = DataLoader(
            self.test_dataset,
            batch_size=self.inference_batch_size,
            shuffle=False,
            num_workers=self.num_workers,
            pin_memory=False,
            drop_last=False,
            persistent_workers=True,
            collate_fn=InferenceCollater(
                tokenizer=self.tokenizer, 
                text_max_len=self.text_max_len,
                mol_ph=self.mol_ph_token, 
                mol_token_id=self.mol_token_id, 
                is_gal=self.is_gal,
                disable_graphs=self.disable_graphs,
                last_only=self.last_only,
            ),
        )
        return [test_loader]

    def add_model_specific_args(parent_parser):
        parser = parent_parser.add_argument_group("Data module")
        parser.add_argument('--num_workers', type=int, default=2)
        parser.add_argument('--batch_size', type=int, default=4)
        parser.add_argument('--inference_batch_size', type=int, default=4)
        parser.add_argument('--use_smiles', action='store_true', default=False)
        parser.add_argument('--root', type=str, default='data/action_data')
        parser.add_argument('--context_style', type=str, default='weighted_rxn', choices=['weighted_rxn', 'uniform_rxn', 'uniform_mol', 'single_mol', 'hybrid'])
        parser.add_argument('--rxn_max_len', type=int, default=512)
        parser.add_argument('--text_max_len', type=int, default=512)
        parser.add_argument('--smi_max_len', type=int, default=128)
        parser.add_argument('--pretrain_rxn_num', type=int, default=50000)
        parser.add_argument('--reverse_ratio', type=float, default=0.5, help='ratio of reversed reactions (retro reactions)')
        parser.add_argument('--disable_abstract', action='store_true', default=False)
        parser.add_argument('--disable_property', action='store_true', default=False)
        parser.add_argument('--pretrain_use_caption', action='store_true', default=False)
        parser.add_argument('--caption_batch_num', type=int, default=5000)
        parser.add_argument('--pretrain_synthesis_path', type=str, default=None)
        parser.add_argument('--synthesis_batch_num', type=int, default=5000)
        parser.add_argument('--rxn_batch_size', type=int, default=4)
        parser.add_argument('--roundrobin_train', action='store_true', default=False)
        parser.add_argument('--test_subset', type=int, default=-1)
        parser.add_argument('--pretrain_eval_last_only', default=False, action='store_true')
        parser.add_argument('--prompt', type=str, default=None)
        return parent_parser