Spaces:
Runtime error
Runtime error
File size: 13,049 Bytes
95f97c5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 |
# Copyright (c) Microsoft Corporation.
# Licensed under the MIT License.
import torch
from pytorch_lightning import LightningDataModule
import torch_geometric
# from torch_geometric.loader import DataLoader
from torch.utils.data import DataLoader
from torch_geometric.loader.dataloader import Collater
from data_provider.molecule_abstract_dataset import MoleculeAbstract
import re
from transformers import BatchEncoding
# we split individual characters inside special tokens like [START_DNA]
CUSTOM_SEQ_RE = re.compile(r"(\[START_(DNA|SMILES|I_SMILES|AMINO)])(.*?)(\[END_\2])")
# token added to implement a custom sequence tokenization. This token is added at
# corpus cleaning step and removed in pretokenization. The digits are added to increase the chance
# that they do not occur in the corpus. The digits are escaped so that the token does not appear
# literally in the source code in case we ever include it in the training data.
SPLIT_MARKER = f"SPL{1}T-TH{1}S-Pl3A5E"
def _insert_split_marker(m: re.Match):
"""
Applies split marker based on a regex match of special tokens such as
[START_DNA].
Parameters
----------
n : str
Input text to split
Returns
----------
str - the text with the split token added
"""
start_token, _, sequence, end_token = m.groups()
sequence = re.sub(r"(.)", fr"{SPLIT_MARKER}\1", sequence, flags=re.DOTALL)
return f"{start_token}{sequence}{SPLIT_MARKER}{end_token}"
def smiles_handler(text, mol_ph, is_gal=True):
smiles_list = []
for match in CUSTOM_SEQ_RE.finditer(text):
smiles = match.group(3)
smiles_list.append(smiles)
if is_gal:
text = CUSTOM_SEQ_RE.sub(r'\1\3\4%s' % (mol_ph), text)
text = escape_custom_split_sequence(text)
return text, smiles_list
else:
text = CUSTOM_SEQ_RE.sub(r'\3%s' % (mol_ph), text)
return text, smiles_list
def escape_custom_split_sequence(text):
"""
Applies custom splitting to the text for GALILEO's tokenization
Parameters
----------
text : str
Input text to split
Returns
----------
str - the text with the split token added
"""
return CUSTOM_SEQ_RE.sub(_insert_split_marker, text)
def tokenize_and_merge_batched_qa_pairs(tokenizer, qa_pairs_list, max_length):
tokenized_batches = {
'input_ids': [],
'attention_mask': []
}
for qa_pairs in qa_pairs_list:
max_length_per_qa = max_length // len(qa_pairs)
batch_input_ids = []
batch_attention_mask = []
for qa in qa_pairs:
# here qa should be string
tokens = tokenizer(qa,
truncation=True,
padding=False,
add_special_tokens=False,
max_length=max_length_per_qa,
return_tensors='pt',
return_attention_mask=True)
batch_input_ids.extend(tokens['input_ids'].squeeze().tolist())
batch_attention_mask.extend(tokens['attention_mask'].squeeze().tolist())
# Pad the batch to max_length
padding_length = max_length - len(batch_input_ids)
batch_input_ids.extend([tokenizer.pad_token_id] * padding_length)
batch_attention_mask.extend([0] * padding_length)
tokenized_batches['input_ids'].append(torch.tensor(batch_input_ids).unsqueeze(0))
tokenized_batches['attention_mask'].append(torch.tensor(batch_attention_mask).unsqueeze(0))
tokenized_batches['input_ids'] = torch.cat(tokenized_batches['input_ids'], dim=0)
tokenized_batches['attention_mask'] = torch.cat(tokenized_batches['attention_mask'], dim=0)
tokenized_batch = BatchEncoding(data=tokenized_batches, tensor_type='pt')
return tokenized_batch
class TrainCollater:
def __init__(self, tokenizer, text_max_len, mol_ph, mol_token_id, is_gal=True, disable_graphs=False):
self.text_max_len = text_max_len
self.tokenizer = tokenizer
self.collater = Collater([], [])
self.mol_ph = mol_ph
self.mol_token_id = mol_token_id
self.is_gal = is_gal
self.disable_graphs = disable_graphs
def __call__(self, batch):
graphs, mol_prompt, text_prompt = zip(*batch)
if not self.disable_graphs:
graphs = [graph for graph_batch in graphs for graph in graph_batch]
graphs = self.collater(graphs)
qa_pairs = []
for mol_batch, text_batch in zip(mol_prompt, text_prompt):
qa_list = []
for mol_prompt, text_prompt in zip(mol_batch, text_batch):
smiles_prompt = smiles_handler(mol_prompt, self.mol_ph, self.is_gal)[0]
qa_list.append(f'{smiles_prompt} {text_prompt}')
qa_pairs.append(qa_list)
self.tokenizer.padding_side = 'right'
qa_batch = tokenize_and_merge_batched_qa_pairs(self.tokenizer, qa_pairs, self.text_max_len)
is_mol_token = qa_batch.input_ids == self.mol_token_id
qa_batch['is_mol_token'] = is_mol_token
return graphs, qa_batch
class InferenceCollater:
def __init__(self, tokenizer, text_max_len, mol_ph, mol_token_id, is_gal=True, disable_graphs=False, last_only=False):
self.text_max_len = text_max_len
self.tokenizer = tokenizer
self.collater = Collater([], [])
self.mol_ph = mol_ph
self.mol_token_id = mol_token_id
self.is_gal = is_gal
self.disable_graphs = disable_graphs
self.last_only = last_only
def __call__(self, batch):
graphs, mol_prompt, text_prompt = zip(*batch)
rxn_ids = [0 for i in range(len(mol_prompt))]
if self.last_only:
mol_prompt = [[mol_batch[-1]] for mol_batch in mol_prompt]
text_prompt = [[text_batch[-1]] for text_batch in text_prompt]
graphs = [[graph_batch[-1]] for graph_batch in graphs]
if not self.disable_graphs:
graphs = [graph for graph_batch in graphs for graph in graph_batch]
graphs = self.collater(graphs)
input_text, output_text = [], []
for mol_batch, text_batch in zip(mol_prompt, text_prompt):
qa_list = []
for mol_prompt, text_prompt in list(zip(mol_batch, text_batch))[:-1]:
smiles_prompt = smiles_handler(mol_prompt, self.mol_ph, self.is_gal)[0]
qa_list.append(f'{smiles_prompt} {text_prompt}')
qa_list.append(f'{smiles_handler(mol_batch[-1], self.mol_ph, self.is_gal)[0]} ')
output_text.append(text_batch[-1])
input_text.append(qa_list)
self.tokenizer.padding_side = 'right'
input_batch = tokenize_and_merge_batched_qa_pairs(self.tokenizer, input_text, self.text_max_len)
is_mol_token = input_batch.input_ids == self.mol_token_id
input_batch['is_mol_token'] = is_mol_token
return rxn_ids, graphs, input_batch, output_text, input_text
class PretrainDM(LightningDataModule):
def __init__(
self,
num_workers: int = 0,
batch_size: int = 256,
root: str = 'data/',
text_max_len: int = 128,
rxn_max_len: int = 128,
smi_max_len: int = 128,
tokenizer=None,
args=None,
):
super().__init__()
self.args = args
self.batch_size = batch_size
self.inference_batch_size = args.inference_batch_size
self.num_workers = num_workers
self.text_max_len = text_max_len
self.rxn_max_len = rxn_max_len
self.pretrain_dataset = MoleculeAbstract(
root,
rxn_num=args.pretrain_rxn_num,
rxn_batch_size=args.rxn_batch_size,
smi_max_len=smi_max_len,
disable_graph_cache=args.disable_graph_cache,
context_style=args.context_style,
disable_graphs=args.disable_graphs,
use_caption_dataset=args.pretrain_use_caption,
caption_batch_num=args.caption_batch_num,
synthesis_datasetpath=args.pretrain_synthesis_path,
synthesis_batch_num=args.synthesis_batch_num,
reverse_ratio=args.reverse_ratio,
enable_abstract=not args.disable_abstract,
enable_property=not args.disable_property,
smiles_type=args.smiles_type,
)
self.test_dataset = MoleculeAbstract(
root,
rxn_num=args.pretrain_rxn_num,
rxn_batch_size=args.rxn_batch_size,
smi_max_len=smi_max_len,
disable_graph_cache=args.disable_graph_cache,
context_style=args.context_style,
disable_graphs=args.disable_graphs,
use_caption_dataset=args.pretrain_use_caption,
caption_batch_num=args.caption_batch_num,
reverse_ratio=args.reverse_ratio,
enable_abstract=not args.disable_abstract,
enable_property=not args.disable_property,
smiles_type=args.smiles_type,
mode='test',
)
self.init_tokenizer(tokenizer)
self.mol_ph_token = '<mol>' * self.args.num_query_token
self.is_gal = args.opt_model.find('galactica') >= 0
self.disable_graphs = args.disable_graphs
self.last_only = args.pretrain_eval_last_only
def init_tokenizer(self, tokenizer):
self.tokenizer = tokenizer
self.pretrain_dataset.tokenizer = tokenizer
self.test_dataset.tokenizer = tokenizer
self.mol_token_id = self.tokenizer.mol_token_id
# self.tokenizer.mol_token_id = tokenizer("<mol>", add_special_tokens=False).input_ids[0]
def train_dataloader(self):
self.pretrain_dataset.reload_data_list()
loader = DataLoader(
self.pretrain_dataset,
batch_size=self.batch_size,
shuffle=True,
num_workers=self.num_workers,
pin_memory=False,
drop_last=True,
persistent_workers=True,
collate_fn=TrainCollater(
tokenizer=self.tokenizer,
text_max_len=self.text_max_len,
mol_ph=self.mol_ph_token,
mol_token_id=self.mol_token_id,
is_gal=self.is_gal,
disable_graphs=self.disable_graphs,
),
)
return loader
def val_dataloader(self):
test_loader = DataLoader(
self.test_dataset,
batch_size=self.inference_batch_size,
shuffle=False,
num_workers=self.num_workers,
pin_memory=False,
drop_last=False,
persistent_workers=True,
collate_fn=InferenceCollater(
tokenizer=self.tokenizer,
text_max_len=self.text_max_len,
mol_ph=self.mol_ph_token,
mol_token_id=self.mol_token_id,
is_gal=self.is_gal,
disable_graphs=self.disable_graphs,
last_only=self.last_only,
),
)
return [test_loader]
def add_model_specific_args(parent_parser):
parser = parent_parser.add_argument_group("Data module")
parser.add_argument('--num_workers', type=int, default=2)
parser.add_argument('--batch_size', type=int, default=4)
parser.add_argument('--inference_batch_size', type=int, default=4)
parser.add_argument('--use_smiles', action='store_true', default=False)
parser.add_argument('--root', type=str, default='data/action_data')
parser.add_argument('--context_style', type=str, default='weighted_rxn', choices=['weighted_rxn', 'uniform_rxn', 'uniform_mol', 'single_mol', 'hybrid'])
parser.add_argument('--rxn_max_len', type=int, default=512)
parser.add_argument('--text_max_len', type=int, default=512)
parser.add_argument('--smi_max_len', type=int, default=128)
parser.add_argument('--pretrain_rxn_num', type=int, default=50000)
parser.add_argument('--reverse_ratio', type=float, default=0.5, help='ratio of reversed reactions (retro reactions)')
parser.add_argument('--disable_abstract', action='store_true', default=False)
parser.add_argument('--disable_property', action='store_true', default=False)
parser.add_argument('--pretrain_use_caption', action='store_true', default=False)
parser.add_argument('--caption_batch_num', type=int, default=5000)
parser.add_argument('--pretrain_synthesis_path', type=str, default=None)
parser.add_argument('--synthesis_batch_num', type=int, default=5000)
parser.add_argument('--rxn_batch_size', type=int, default=4)
parser.add_argument('--roundrobin_train', action='store_true', default=False)
parser.add_argument('--test_subset', type=int, default=-1)
parser.add_argument('--pretrain_eval_last_only', default=False, action='store_true')
parser.add_argument('--prompt', type=str, default=None)
return parent_parser
|