File size: 31,886 Bytes
d737ecd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
import torch
from torch import nn
import torch.nn.functional as F
from torch.nn.utils.parametrize import register_parametrization
from torchcomp import ms2coef, coef2ms, db2amp
from torchaudio.transforms import Spectrogram, InverseSpectrogram

from typing import List, Tuple, Union, Any, Optional, Callable
import math
from torch_fftconv import fft_conv1d
from functools import reduce

from .functional import (
    compressor_expander,
    lowpass_biquad,
    highpass_biquad,
    equalizer_biquad,
    lowshelf_biquad,
    highshelf_biquad,
    lowpass_biquad_coef,
    highpass_biquad_coef,
    highshelf_biquad_coef,
    lowshelf_biquad_coef,
    equalizer_biquad_coef,
)
from .utils import chain_functions


class Clip(nn.Module):
    def __init__(self, max: Optional[float] = None, min: Optional[float] = None):
        super().__init__()
        self.min = min
        self.max = max

    def forward(self, x):
        if self.min is not None:
            x = torch.clip(x, min=self.min)
        if self.max is not None:
            x = torch.clip(x, max=self.max)
        return x


def clip_delay_eq_Q(m: nn.Module, Q: float):
    if isinstance(m, Delay) and isinstance(m.eq, LowPass):
        register_parametrization(m.eq.params, "Q", Clip(max=Q))
    return m


float2param = lambda x: nn.Parameter(
    torch.tensor(x, dtype=torch.float32) if not isinstance(x, torch.Tensor) else x
)

STEREO_NORM = math.sqrt(2)


def broadcast2stereo(m, args):
    x, *_ = args
    return x.expand(-1, 2, -1) if x.shape[1] == 1 else x


hadamard = lambda x: torch.stack([x.sum(1), x[:, 0] - x[:, 1]], 1) / STEREO_NORM


class Hadamard(nn.Module):
    def forward(self, x):
        return hadamard(x)


class FX(nn.Module):
    def __init__(self, **kwargs) -> None:
        super().__init__()

        self.params = nn.ParameterDict({k: float2param(v) for k, v in kwargs.items()})


class SmoothingCoef(nn.Module):
    def forward(self, x):
        return x.sigmoid()

    def right_inverse(self, y):
        return (y / (1 - y)).log()


class CompRatio(nn.Module):
    def forward(self, x):
        return x.exp() + 1

    def right_inverse(self, y):
        return torch.log(y - 1)


class MinMax(nn.Module):
    def __init__(self, min=0.0, max: Union[float, torch.Tensor] = 1.0):
        super().__init__()
        if isinstance(min, torch.Tensor):
            self.register_buffer("min", min, persistent=False)
        else:
            self.min = min

        if isinstance(max, torch.Tensor):
            self.register_buffer("max", max, persistent=False)
        else:
            self.max = max

        self._m = SmoothingCoef()

    def forward(self, x):
        return self._m(x) * (self.max - self.min) + self.min

    def right_inverse(self, y):
        return self._m.right_inverse((y - self.min) / (self.max - self.min))


class WrappedPositive(nn.Module):
    def __init__(self, period):
        super().__init__()
        self.period = period

    def forward(self, x):
        return x.abs() % self.period

    def right_inverse(self, y):
        return y


class CompressorExpander(FX):
    cmp_ratio_min: float = 1
    cmp_ratio_max: float = 20

    def __init__(
        self,
        sr: int,
        cmp_ratio: float = 2.0,
        exp_ratio: float = 0.5,
        at_ms: float = 50.0,
        rt_ms: float = 50.0,
        avg_coef: float = 0.3,
        cmp_th: float = -18.0,
        exp_th: float = -54.0,
        make_up: float = 0.0,
        delay: int = 0,
        lookahead: bool = False,
        max_lookahead: float = 15.0,
    ):
        super().__init__(
            cmp_th=cmp_th,
            exp_th=exp_th,
            make_up=make_up,
            avg_coef=avg_coef,
            cmp_ratio=cmp_ratio,
            exp_ratio=exp_ratio,
        )
        # deprecated, please use lookahead instead
        self.delay = delay
        self.sr = sr

        self.params["at"] = nn.Parameter(ms2coef(torch.tensor(at_ms), sr))
        self.params["rt"] = nn.Parameter(ms2coef(torch.tensor(rt_ms), sr))

        if lookahead:
            self.params["lookahead"] = nn.Parameter(torch.ones(1) / sr * 1000)
            register_parametrization(
                self.params, "lookahead", WrappedPositive(max_lookahead)
            )
            sinc_length = int(sr * (max_lookahead + 1) * 0.001) + 1
            left_pad_size = int(sr * 0.001)
            self._pad_size = (left_pad_size, sinc_length - left_pad_size - 1)
            self.register_buffer(
                "_arange",
                torch.arange(sinc_length) - left_pad_size,
                persistent=False,
            )
        self.lookahead = lookahead

        register_parametrization(self.params, "at", SmoothingCoef())
        register_parametrization(self.params, "rt", SmoothingCoef())
        register_parametrization(self.params, "avg_coef", SmoothingCoef())
        register_parametrization(
            self.params, "cmp_ratio", MinMax(self.cmp_ratio_min, self.cmp_ratio_max)
        )
        register_parametrization(self.params, "exp_ratio", SmoothingCoef())

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = (
                f"attack: {coef2ms(self.params.at, self.sr).item()} (ms)\n"
                f"release: {coef2ms(self.params.rt, self.sr).item()} (ms)\n"
                f"avg_coef: {self.params.avg_coef.item()}\n"
                f"compressor_ratio: {self.params.cmp_ratio.item()}\n"
                f"expander_ratio: {self.params.exp_ratio.item()}\n"
                f"compressor_threshold: {self.params.cmp_th.item()} (dB)\n"
                f"expander_threshold: {self.params.exp_th.item()} (dB)\n"
                f"make_up: {self.params.make_up.item()} (dB)"
            )
            if self.lookahead:
                s += f"\nlookahead: {self.params.lookahead.item()} (ms)"
        return s

    def forward(self, x):
        if self.lookahead:
            lookahead_in_samples = self.params.lookahead * 0.001 * self.sr
            sinc_filter = torch.sinc(self._arange - lookahead_in_samples)
            lookahead_func = lambda gain: F.conv1d(
                F.pad(
                    gain.view(-1, 1, gain.size(-1)), self._pad_size, mode="replicate"
                ),
                sinc_filter[None, None, :],
            ).view(*gain.shape)
        else:
            lookahead_func = lambda x: x

        return compressor_expander(
            x.reshape(-1, x.shape[-1]),
            lookahead_func=lookahead_func,
            **{k: v for k, v in self.params.items() if k != "lookahead"},
        ).view(*x.shape)


class Panning(FX):
    def __init__(self, pan: float = 0.0):
        assert pan <= 100 and pan >= -100
        super().__init__(pan=(pan + 100) / 200)

        register_parametrization(self.params, "pan", SmoothingCoef())

        self.register_forward_pre_hook(broadcast2stereo)

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = f"pan: {self.params.pan.item() * 200 - 100}"
        return s

    def forward(self, x: torch.Tensor):
        angle = self.params.pan.view(1) * torch.pi * 0.5
        amp = torch.concat([angle.cos(), angle.sin()]).view(2, 1) * STEREO_NORM
        return x * amp


class StereoWidth(Panning):
    def forward(self, x: torch.Tensor):
        return chain_functions(hadamard, super().forward, hadamard)(x)


class ImpulseResponse(nn.Module):
    def forward(self, h):
        return torch.cat([torch.ones_like(h[..., :1]), h], dim=-1)


class FIR(FX):
    def __init__(
        self,
        length: int,
        channels: int = 2,
        conv_method: str = "direct",
    ):
        super().__init__(kernel=torch.zeros(channels, length - 1))
        self._padding = length - 1
        self.channels = channels

        match conv_method:
            case "direct":
                self.conv_func = F.conv1d
            case "fft":
                self.conv_func = fft_conv1d
            case _:
                raise ValueError(f"Unknown conv_method: {conv_method}")

        if channels == 2:
            self.register_forward_pre_hook(broadcast2stereo)

    def forward(self, x: torch.Tensor):
        zero_padded = F.pad(x[..., :-1], (self._padding, 0), "constant", 0)
        return x + self.conv_func(
            zero_padded, self.params.kernel.flip(1).unsqueeze(1), groups=self.channels
        )


class QFactor(nn.Module):
    def forward(self, x):
        return x.exp()

    def right_inverse(self, y):
        return y.log()


class LowPass(FX):
    def __init__(
        self,
        sr: int,
        freq: float = 17500.0,
        Q: float = 0.707,
        min_freq: float = 200.0,
        max_freq: float = 18000,
        min_Q: float = 0.5,
        max_Q: float = 10.0,
    ):
        super().__init__(freq=freq, Q=Q)

        self.sr = sr
        register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
        register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))

    def forward(self, x):
        return lowpass_biquad(
            x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
        )

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = f"freq: {self.params.freq.item():.4f}, Q: {self.params.Q.item():.4f}"
        return s


class HighPass(LowPass):
    def __init__(
        self,
        *args,
        freq: float = 200.0,
        min_freq: float = 16.0,
        max_freq: float = 5300.0,
        **kwargs,
    ):
        super().__init__(
            *args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
        )

    def forward(self, x):
        return highpass_biquad(
            x, sample_rate=self.sr, cutoff_freq=self.params.freq, Q=self.params.Q
        )


class Peak(FX):
    def __init__(
        self,
        sr: int,
        gain: float = 0.0,
        freq: float = 2000.0,
        Q: float = 0.707,
        min_freq: float = 33.0,
        max_freq: float = 17500.0,
        min_Q: float = 0.2,
        max_Q: float = 20,
    ):
        super().__init__(freq=freq, Q=Q, gain=gain)

        self.sr = sr

        register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))
        register_parametrization(self.params, "Q", MinMax(min_Q, max_Q))

    def forward(self, x):
        return equalizer_biquad(
            x,
            sample_rate=self.sr,
            center_freq=self.params.freq,
            Q=self.params.Q,
            gain=self.params.gain,
        )

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}, Q: {self.params.Q.item():.4f}"
        return s


class LowShelf(FX):
    def __init__(
        self,
        sr: int,
        gain: float = 0.0,
        freq: float = 115.0,
        min_freq: float = 30,
        max_freq: float = 200,
    ):
        super().__init__(freq=freq, gain=gain)

        self.sr = sr
        register_parametrization(self.params, "freq", MinMax(min_freq, max_freq))

        self.register_buffer("Q", torch.tensor(0.707), persistent=False)

    def forward(self, x):
        return lowshelf_biquad(
            x,
            sample_rate=self.sr,
            cutoff_freq=self.params.freq,
            gain=self.params.gain,
            Q=self.Q,
        )

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = f"freq: {self.params.freq.item():.4f}, gain: {self.params.gain.item():.4f}"
        return s


class HighShelf(LowShelf):
    def __init__(
        self,
        *args,
        freq: float = 4525,
        min_freq: float = 750,
        max_freq: float = 8300,
        **kwargs,
    ):
        super().__init__(
            *args, freq=freq, min_freq=min_freq, max_freq=max_freq, **kwargs
        )

    def forward(self, x):
        return highshelf_biquad(
            x,
            sample_rate=self.sr,
            cutoff_freq=self.params.freq,
            gain=self.params.gain,
            Q=self.Q,
        )


def module2coeffs(
    m: Union[LowPass, HighPass, Peak, LowShelf, HighShelf],
) -> Tuple[
    torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor, torch.Tensor
]:
    match m:
        case LowPass():
            return lowpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
        case HighPass():
            return highpass_biquad_coef(m.sr, m.params.freq, m.params.Q)
        case Peak():
            return equalizer_biquad_coef(m.sr, m.params.freq, m.params.Q, m.params.gain)
        case LowShelf():
            return lowshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
        case HighShelf():
            return highshelf_biquad_coef(m.sr, m.params.freq, m.params.gain, m.Q)
        case _:
            raise ValueError(f"Unknown module: {m}")


class AlwaysNegative(nn.Module):
    def forward(self, x):
        return -F.softplus(x)

    def right_inverse(self, y):
        return torch.log(y.neg().exp() - 1)


class Reverb(FX):
    def __init__(self, ir_len=60000, n_fft=384, hop_length=192, downsample_factor=1):
        super().__init__(
            log_mag=torch.full((2, n_fft // downsample_factor // 2 + 1), -1.0),
            log_mag_delta=torch.full((2, n_fft // downsample_factor // 2 + 1), -5.0),
        )

        self.steps = (ir_len - n_fft + hop_length - 1) // hop_length
        self.n_fft = n_fft
        self.hop_length = hop_length
        self.downsample_factor = downsample_factor

        self._noise_angle = nn.Parameter(
            torch.rand(2, n_fft // 2 + 1, self.steps) * 2 * torch.pi
        )

        self.register_buffer(
            "_arange", torch.arange(self.steps, dtype=torch.float32), persistent=False
        )
        self.spec_forward = Spectrogram(n_fft, hop_length=hop_length, power=None)
        self.spec_inverse = InverseSpectrogram(
            n_fft,
            hop_length=hop_length,
        )

        register_parametrization(self.params, "log_mag", AlwaysNegative())
        register_parametrization(self.params, "log_mag_delta", AlwaysNegative())

        self.register_forward_pre_hook(broadcast2stereo)

    def forward(self, x):
        h = x
        H = self.spec_forward(h)

        log_mag = self.params.log_mag
        log_mag_delta = self.params.log_mag_delta

        if self.downsample_factor > 1:
            log_mag = F.interpolate(
                log_mag.unsqueeze(0),
                size=self._noise_angle.size(1),
                align_corners=True,
                mode="linear",
            ).squeeze(0)
            log_mag_delta = F.interpolate(
                log_mag_delta.unsqueeze(0),
                size=self._noise_angle.size(1),
                align_corners=True,
                mode="linear",
            ).squeeze(0)

        ir_2d = torch.exp(
            log_mag.unsqueeze(-1)
            + log_mag_delta.unsqueeze(-1) * self._arange
            + self._noise_angle * 1j
        )

        padded_H = F.pad(H.flatten(1, 2), (ir_2d.shape[-1] - 1, 0))

        H = F.conv1d(
            padded_H,
            hadamard(ir_2d.unsqueeze(0)).flatten(1, 2).flip(-1).transpose(0, 1),
            groups=H.shape[2] * 2,
        ).view(*H.shape)

        h = self.spec_inverse(H)
        return h


class Delay(FX):
    min_delay: float = 100
    max_delay: float = 1000

    def __init__(
        self,
        sr: int,
        delay=200.0,
        feedback=0.1,
        gain=0.1,
        ir_duration: float = 2,
        eq: Optional[nn.Module] = None,
        recursive_eq=False,
    ):
        super().__init__(
            delay=delay,
            feedback=feedback,
            gain=gain,
        )
        self.sr = sr
        self.ir_length = int(sr * max(ir_duration, self.max_delay * 0.002))

        register_parametrization(
            self.params, "delay", MinMax(self.min_delay, self.max_delay)
        )
        register_parametrization(self.params, "feedback", SmoothingCoef())
        register_parametrization(self.params, "gain", SmoothingCoef())

        self.eq = eq
        self.recursive_eq = recursive_eq

        self.register_buffer(
            "_arange", torch.arange(self.ir_length, dtype=torch.float32)
        )

        self.odd_pan = Panning(0)
        self.even_pan = Panning(0)

    def forward(self, x):
        assert x.size(1) == 1, x.size()
        delay_in_samples = self.sr * self.params.delay * 0.001
        num_delays = self.ir_length // int(delay_in_samples.item() + 1)
        series = torch.arange(1, num_delays + 1, device=x.device)
        decays = self.params.feedback ** (series - 1)

        if self.recursive_eq and self.eq is not None:
            sinc_index = self._arange - delay_in_samples
            single_sinc_filter = torch.sinc(sinc_index)
            eq_sinc_filter = self.eq(single_sinc_filter)
            H = torch.fft.rfft(eq_sinc_filter)
            H_powered = torch.polar(
                H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
            )
            sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
        else:
            delays_in_samples = delay_in_samples * series
            sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
            sinc_filters = torch.sinc(sinc_indexes)

        decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)
        return self._filter(x, decayed_sinc_filters)

    def _filter(self, x: torch.Tensor, decayed_sinc_filters: torch.Tensor):
        odd_delay_filters = torch.sum(decayed_sinc_filters[::2], 0)
        even_delay_filters = torch.sum(decayed_sinc_filters[1::2], 0)
        stacked_filters = torch.stack([odd_delay_filters, even_delay_filters])

        if self.eq is not None and not self.recursive_eq:
            stacked_filters = self.eq(stacked_filters)

        gained_odd_even_filters = stacked_filters * self.params.gain
        padded_x = F.pad(x, (gained_odd_even_filters.size(-1) - 1, 0))
        conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
        return sum(
            [
                panner(s)
                for panner, s in zip(
                    [self.odd_pan, self.even_pan],
                    # fft_conv1d(
                    conv1d(
                        padded_x,
                        gained_odd_even_filters.flip(-1).unsqueeze(1),
                    ).chunk(2, 1),
                )
            ]
        )

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = (
                f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
                f"feedback: {self.params.feedback.item()}\n"
                f"gain: {self.params.gain.item()}"
            )
        return s


class SurrogateDelay(Delay):
    def __init__(self, *args, dropout=0.5, straight_through=False, **kwargs):
        super().__init__(*args, **kwargs)

        self.dropout = dropout
        self.straight_through = straight_through
        self.log_damp = nn.Parameter(torch.ones(1) * -0.01)
        register_parametrization(self, "log_damp", AlwaysNegative())

    def forward(self, x):
        assert x.size(1) == 1, x.size()
        if not self.training:
            return super().forward(x)

        log_damp = self.log_damp
        delay_in_samples = self.sr * self.params.delay * 0.001
        num_delays = self.ir_length // int(delay_in_samples.item() + 1)
        series = torch.arange(1, num_delays + 1, device=x.device)
        decays = self.params.feedback ** (series - 1)

        if self.recursive_eq and self.eq is not None:
            exp_factor = self._arange[: self.ir_length // 2 + 1]
            damped_exp = torch.exp(
                log_damp * exp_factor
                - 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factor
            )
            sinc_filter = torch.fft.irfft(damped_exp, n=self.ir_length)
            if self.straight_through:
                sinc_index = self._arange - delay_in_samples
                hard_sinc_filter = torch.sinc(sinc_index)
                sinc_filter = sinc_filter + (hard_sinc_filter - sinc_filter).detach()

            eq_sinc_filter = self.eq(sinc_filter)
            H = torch.fft.rfft(eq_sinc_filter)

            # use polar form to avoid NaN
            H_powered = torch.polar(
                H.abs() ** series.unsqueeze(-1), H.angle() * series.unsqueeze(-1)
            )
            sinc_filters = torch.fft.irfft(H_powered, n=self.ir_length)
        else:
            exp_factors = series.unsqueeze(-1) * self._arange[: self.ir_length // 2 + 1]
            damped_exps = torch.exp(
                log_damp * exp_factors
                - 1j * delay_in_samples / self.ir_length * 2 * torch.pi * exp_factors
            )
            sinc_filters = torch.fft.irfft(damped_exps, n=self.ir_length)
            if self.straight_through:
                delays_in_samples = delay_in_samples * series
                sinc_indexes = self._arange - delays_in_samples.unsqueeze(-1)
                hard_sinc_filters = torch.sinc(sinc_indexes)
                sinc_filters = (
                    sinc_filters + (hard_sinc_filters - sinc_filters).detach()
                )

        decayed_sinc_filters = sinc_filters * decays.unsqueeze(-1)

        dropout_mask = torch.rand(x.size(0), device=x.device) < self.dropout
        if not torch.any(dropout_mask):
            return self._filter(x, decayed_sinc_filters)
        elif torch.all(dropout_mask):
            return super().forward(x)

        out = torch.zeros((x.size(0), 2, x.size(2)), device=x.device)
        out[~dropout_mask] = self._filter(x[~dropout_mask], decayed_sinc_filters)
        out[dropout_mask] = super().forward(x[dropout_mask])
        return out

    def extra_repr(self) -> str:
        with torch.no_grad():
            return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"


class FSDelay(FX):
    def __init__(
        self,
        sr: int,
        delay=200.0,
        feedback=0.1,
        gain=0.1,
        ir_duration: float = 6,
        eq: Optional[LowPass] = None,
        recursive_eq=False,
    ):
        super().__init__(
            delay=delay,
            feedback=feedback,
            gain=gain,
        )
        self.sr = sr
        self.ir_length = int(sr * max(ir_duration, Delay.max_delay * 0.002))

        register_parametrization(
            self.params, "delay", MinMax(Delay.min_delay, Delay.max_delay)
        )
        register_parametrization(self.params, "gain", SmoothingCoef())

        T_60 = ir_duration * 0.75
        max_delay_in_samples = sr * Delay.max_delay * 0.001
        maximum_decay = db2amp(torch.tensor(-60 / sr / T_60 * max_delay_in_samples))
        register_parametrization(self.params, "feedback", MinMax(0, maximum_decay))

        self.eq = eq
        self.recursive_eq = recursive_eq

        self.odd_pan = Panning(0)
        self.even_pan = Panning(0)

        self.register_buffer(
            "_arange", torch.arange(self.ir_length, dtype=torch.float32)
        )

    def _get_h(self):
        freqs = self._arange[: self.ir_length // 2 + 1] / self.ir_length * 2 * torch.pi
        delay_in_samples = self.sr * self.params.delay * 0.001

        # construct it like a fdn
        Dinv = torch.exp(1j * freqs * delay_in_samples)
        Dinv2 = torch.exp(2j * freqs * delay_in_samples)
        if self.recursive_eq and self.eq is not None:
            b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
            z_inv = torch.exp(-1j * freqs)
            z_inv2 = torch.exp(-2j * freqs)
            eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
            damp = eq_H * self.params.feedback
            det = Dinv2 - damp * damp
        else:
            damp = torch.full_like(Dinv, self.params.feedback) + 0j
            det = Dinv2 - self.params.feedback.square()
        inv_Dinv_m_A = torch.stack([Dinv, damp], 0) / det
        h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length) * self.params.gain

        if self.eq is not None and not self.recursive_eq:
            h = self.eq(h)
        return h

    def forward(self, x):
        assert x.size(1) == 1, x.size()
        h = self._get_h()

        padded_x = F.pad(x, (h.size(-1) - 1, 0))
        conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d
        return sum(
            [
                panner(s)
                for panner, s in zip(
                    [self.odd_pan, self.even_pan],
                    conv1d(
                        padded_x,
                        h.flip(-1).unsqueeze(1),
                    ).chunk(2, 1),
                )
            ]
        )

    def extra_repr(self) -> str:
        with torch.no_grad():
            s = (
                f"delay: {self.sr * self.params.delay.item() * 0.001} (samples)\n"
                f"feedback: {self.params.feedback.item()}\n"
                f"gain: {self.params.gain.item()}"
            )
        return s


class FSSurrogateDelay(FSDelay):
    def __init__(self, *args, straight_through=False, **kwargs):
        super().__init__(*args, **kwargs)

        self.straight_through = straight_through
        self.log_damp = nn.Parameter(torch.ones(1) * -0.0001)
        register_parametrization(self, "log_damp", AlwaysNegative())

    def _get_h(self):
        if not self.training:
            return super()._get_h()

        log_damp = self.log_damp
        delay_in_samples = self.sr * self.params.delay * 0.001

        exp_factor = self._arange[: self.ir_length // 2 + 1]
        freqs = exp_factor / self.ir_length * 2 * torch.pi
        D = torch.exp(log_damp * exp_factor - 1j * delay_in_samples * freqs)
        D2 = torch.exp(log_damp * exp_factor * 2 - 2j * delay_in_samples * freqs)

        if self.straight_through:
            D_orig = torch.exp(-1j * delay_in_samples * freqs)
            D2_orig = torch.exp(-2j * delay_in_samples * freqs)
            D = torch.stack([D, D_orig], 0)
            D2 = torch.stack([D2, D2_orig], 0)

        if self.recursive_eq and self.eq is not None:
            b0, b1, b2, a0, a1, a2 = module2coeffs(self.eq)
            z_inv = torch.exp(-1j * freqs)
            z_inv2 = torch.exp(-2j * freqs)
            eq_H = (b0 + b1 * z_inv + b2 * z_inv2) / (a0 + a1 * z_inv + a2 * z_inv2)
            damp = eq_H * self.params.feedback
            odd_H = D / (1 - damp * damp * D2)
            even_H = odd_H * D * damp
        else:
            damp = torch.full_like(D, self.params.feedback) + 0j
            odd_H = D / (1 - self.params.feedback.square() * D2)
            even_H = odd_H * D * self.params.feedback

        inv_Dinv_m_A = torch.stack([odd_H, even_H], 0)
        h = torch.fft.irfft(inv_Dinv_m_A, n=self.ir_length)

        if self.straight_through:
            damped_h, orig_h = h.unbind(1)
            h = damped_h + (orig_h - damped_h).detach()

        if self.eq is not None and not self.recursive_eq:
            h = self.eq(h)
        return h * self.params.gain

    def extra_repr(self) -> str:
        with torch.no_grad():
            return super().extra_repr() + f"\ndamp: {self.log_damp.exp().item()}"


class SendFXsAndSum(FX):
    def __init__(self, *args, cross_send=True, pan_direct=False):
        super().__init__(
            **(
                {
                    f"sends_{i}": torch.full([len(args) - i - 1], 0.01)
                    for i in range(len(args) - 1)
                }
                if cross_send
                else {}
            )
        )
        self.effects = nn.ModuleList(args)
        if pan_direct:
            self.pan = Panning()

        if cross_send:
            for i in range(len(args) - 1):
                register_parametrization(self.params, f"sends_{i}", SmoothingCoef())

    def forward(self, x):
        if hasattr(self, "pan"):
            di = self.pan(x)
        else:
            di = x

        if len(self.params) == 0:
            return reduce(
                lambda x, y: x[..., : y.shape[-1]] + y[..., : x.shape[-1]],
                map(lambda f: f(x), self.effects),
                di,
            )

        def f(states, ps):
            x, cum_sends = states
            m, send_gains = ps
            h = m(cum_sends[0])
            return (
                x[..., : h.shape[-1]] + h[..., : x.shape[-1]],
                (
                    None
                    if cum_sends.size(0) == 1
                    else cum_sends[1:, ..., : h.shape[-1]]
                    + send_gains[:, None, None, None] * h[..., : cum_sends.shape[-1]]
                ),
            )

        return reduce(
            f,
            zip(
                self.effects,
                [self.params[f"sends_{i}"] for i in range(len(self.effects) - 1)]
                + [None],
            ),
            (di, x.unsqueeze(0).expand(len(self.effects), -1, -1, -1)),
        )[0]


class UniLossLess(nn.Module):
    def forward(self, x):
        tri = x.triu(1)
        return torch.linalg.matrix_exp(tri - tri.T)


class FDN(FX):
    max_delay = 100

    def __init__(
        self,
        sr: int,
        ir_duration: float = 1.0,
        delays=(997, 1153, 1327, 1559, 1801, 2099),
        trainable_delay=False,
        num_decay_freq=1,
        delay_independent_decay=False,
        eq: Optional[nn.Module] = None,
    ):
        # beta = torch.distributions.Beta(1.1, 6)
        num_delays = len(delays)
        super().__init__(
            b=torch.ones(num_delays, 2) / num_delays,
            c=torch.zeros(2, num_delays),
            U=torch.randn(num_delays, num_delays) / num_delays**0.5,
            gamma=torch.rand(
                num_decay_freq, num_delays if not delay_independent_decay else 1
            )
            * 0.2
            + 0.4,
            # delays=beta.sample((num_delays,)) * 64,
        )

        self.sr = sr
        self.ir_length = int(sr * ir_duration)

        # ir_duration = T_60
        T_60 = ir_duration * 0.75
        delays = torch.tensor(delays)
        if delay_independent_decay:
            gamma_max = db2amp(-60 / sr / T_60 * delays.min())
        else:
            gamma_max = db2amp(-60 / sr / T_60 * delays)

        register_parametrization(self.params, "gamma", MinMax(0, gamma_max))
        register_parametrization(self.params, "U", UniLossLess())

        if not trainable_delay:
            self.register_buffer(
                "delays",
                delays,
            )
        else:
            self.params["delays"] = nn.Parameter(delays / sr * 1000)
            register_parametrization(self.params, "delays", MinMax(0, self.max_delay))

        self.register_forward_pre_hook(broadcast2stereo)

        self.eq = eq

    def forward(self, x):
        conv1d = F.conv1d if x.size(-1) > 44100 * 20 else fft_conv1d

        c = self.params.c + 0j
        b = self.params.b + 0j

        gamma = self.params.gamma
        delays = self.delays if hasattr(self, "delays") else self.params.delays

        if gamma.size(0) > 1:
            gamma = F.interpolate(
                gamma.T.unsqueeze(1),
                size=self.ir_length // 2 + 1,
                align_corners=True,
                mode="linear",
            ).transpose(0, 2)

        if gamma.size(2) == 1:
            gamma = gamma ** (delays / delays.min())

        A = self.params.U * gamma

        freqs = (
            torch.arange(self.ir_length // 2 + 1, device=x.device)
            / self.ir_length
            * 2
            * torch.pi
        )
        invD = torch.exp(1j * freqs[:, None] * delays)
        # H = c @ torch.linalg.inv(torch.diag_embed(invD) - A) @ b
        H = c @ torch.linalg.solve(torch.diag_embed(invD) - A, b)

        h = torch.fft.irfft(H.permute(1, 2, 0), n=self.ir_length)

        if self.eq is not None:
            h = self.eq(h)

        # return fft_conv1d(
        return conv1d(
            F.pad(x, (self.ir_length - 1, 0)),
            h.flip(-1),
        )