Spaces:
Running
Running
File size: 6,097 Bytes
d737ecd |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 |
import torch
import torch.nn.functional as F
from torchcomp import compexp_gain, db2amp
from torchlpc import sample_wise_lpc
from typing import List, Tuple, Union, Any, Optional
import math
def inv_22(a, b, c, d):
return torch.stack([d, -b, -c, a]).view(2, 2) / (a * d - b * c)
def eig_22(a, b, c, d):
# https://croninprojects.org/Vince/Geodesy/FindingEigenvectors.pdf
T = a + d
D = a * d - b * c
half_T = T * 0.5
root = torch.sqrt(half_T * half_T - D) # + 0j)
L = torch.stack([half_T + root, half_T - root])
y = (L - a) / b
# y = c / L
V = torch.stack([torch.ones_like(y), y])
return L, V / V.abs().square().sum(0).sqrt()
def fir(x, b):
padded = F.pad(x.reshape(-1, 1, x.size(-1)), (b.size(0) - 1, 0))
return F.conv1d(padded, b.flip(0).view(1, 1, -1)).view(*x.shape)
def allpole(x: torch.Tensor, a: torch.Tensor):
h = x.reshape(-1, x.shape[-1])
return sample_wise_lpc(
h,
a.broadcast_to(h.shape + a.shape),
).reshape(*x.shape)
def biquad(x: torch.Tensor, b0, b1, b2, a0, a1, a2):
b0 = b0 / a0
b1 = b1 / a0
b2 = b2 / a0
a1 = a1 / a0
a2 = a2 / a0
beta1 = b1 - b0 * a1
beta2 = b2 - b0 * a2
tmp = a1.square() - 4 * a2
if tmp < 0:
pole = 0.5 * (-a1 + 1j * torch.sqrt(-tmp))
u = -1j * x[..., :-1]
h = sample_wise_lpc(
u.reshape(-1, u.shape[-1]),
-pole.broadcast_to(u.shape).reshape(-1, u.shape[-1], 1),
).reshape(*u.shape)
h = (
h.real * (beta1 * pole.real / pole.imag + beta2 / pole.imag)
- beta1 * h.imag
)
else:
L, V = eig_22(-a1, -a2, torch.ones_like(a1), torch.zeros_like(a1))
inv_V = inv_22(*V.view(-1))
C = torch.stack([beta1, beta2]) @ V
# project input to eigen space
h = x[..., :-1].unsqueeze(-2) * inv_V[:, :1]
L = L.unsqueeze(-1).broadcast_to(h.shape)
h = (
sample_wise_lpc(h.reshape(-1, h.shape[-1]), -L.reshape(-1, L.shape[-1], 1))
.reshape(*h.shape)
.transpose(-2, -1)
) @ C
tmp = b0 * x
y = torch.cat([tmp[..., :1], h + tmp[..., 1:]], -1)
return y
def highpass_biquad_coef(
sample_rate: int,
cutoff_freq: torch.Tensor,
Q: torch.Tensor,
):
w0 = 2 * torch.pi * cutoff_freq / sample_rate
alpha = torch.sin(w0) / 2.0 / Q
b0 = (1 + torch.cos(w0)) / 2
b1 = -1 - torch.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * torch.cos(w0)
a2 = 1 - alpha
return b0, b1, b2, a0, a1, a2
def apply_biquad(bq):
return lambda waveform, *args, **kwargs: biquad(waveform, *bq(*args, **kwargs))
highpass_biquad = apply_biquad(highpass_biquad_coef)
def lowpass_biquad_coef(
sample_rate: int,
cutoff_freq: torch.Tensor,
Q: torch.Tensor,
):
w0 = 2 * torch.pi * cutoff_freq / sample_rate
alpha = torch.sin(w0) / 2 / Q
b0 = (1 - torch.cos(w0)) / 2
b1 = 1 - torch.cos(w0)
b2 = b0
a0 = 1 + alpha
a1 = -2 * torch.cos(w0)
a2 = 1 - alpha
return b0, b1, b2, a0, a1, a2
def equalizer_biquad_coef(
sample_rate: int,
center_freq: torch.Tensor,
gain: torch.Tensor,
Q: torch.Tensor,
):
w0 = 2 * torch.pi * center_freq / sample_rate
A = torch.exp(gain / 40.0 * math.log(10))
alpha = torch.sin(w0) / 2 / Q
b0 = 1 + alpha * A
b1 = -2 * torch.cos(w0)
b2 = 1 - alpha * A
a0 = 1 + alpha / A
a1 = -2 * torch.cos(w0)
a2 = 1 - alpha / A
return b0, b1, b2, a0, a1, a2
def lowshelf_biquad_coef(
sample_rate: int,
cutoff_freq: torch.Tensor,
gain: torch.Tensor,
Q: torch.Tensor,
):
w0 = 2 * torch.pi * cutoff_freq / sample_rate
A = torch.exp(gain / 40.0 * math.log(10))
alpha = torch.sin(w0) / 2 / Q
cosw0 = torch.cos(w0)
sqrtA = torch.sqrt(A)
b0 = A * (A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA)
b1 = 2 * A * (A - 1 - (A + 1) * cosw0)
b2 = A * (A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA)
a0 = A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA
a1 = -2 * (A - 1 + (A + 1) * cosw0)
a2 = A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA
return b0, b1, b2, a0, a1, a2
def highshelf_biquad_coef(
sample_rate: int,
cutoff_freq: torch.Tensor,
gain: torch.Tensor,
Q: torch.Tensor,
):
w0 = 2 * torch.pi * cutoff_freq / sample_rate
A = torch.exp(gain / 40.0 * math.log(10))
alpha = torch.sin(w0) / 2 / Q
cosw0 = torch.cos(w0)
sqrtA = torch.sqrt(A)
b0 = A * (A + 1 + (A - 1) * cosw0 + 2 * alpha * sqrtA)
b1 = -2 * A * (A - 1 + (A + 1) * cosw0)
b2 = A * (A + 1 + (A - 1) * cosw0 - 2 * alpha * sqrtA)
a0 = A + 1 - (A - 1) * cosw0 + 2 * alpha * sqrtA
a1 = 2 * (A - 1 - (A + 1) * cosw0)
a2 = A + 1 - (A - 1) * cosw0 - 2 * alpha * sqrtA
return b0, b1, b2, a0, a1, a2
highpass_biquad = apply_biquad(highpass_biquad_coef)
lowpass_biquad = apply_biquad(lowpass_biquad_coef)
highshelf_biquad = apply_biquad(highshelf_biquad_coef)
lowshelf_biquad = apply_biquad(lowshelf_biquad_coef)
equalizer_biquad = apply_biquad(equalizer_biquad_coef)
def avg(rms: torch.Tensor, avg_coef: torch.Tensor):
assert torch.all(avg_coef > 0) and torch.all(avg_coef <= 1)
h = rms * avg_coef
return sample_wise_lpc(
h,
(avg_coef - 1).broadcast_to(h.shape).unsqueeze(-1),
)
def avg_rms(audio: torch.Tensor, avg_coef) -> torch.Tensor:
return avg(audio.square().clamp_min(1e-8), avg_coef).sqrt()
def compressor_expander(
x: torch.Tensor,
avg_coef: Union[torch.Tensor, float],
cmp_th: Union[torch.Tensor, float],
cmp_ratio: Union[torch.Tensor, float],
exp_th: Union[torch.Tensor, float],
exp_ratio: Union[torch.Tensor, float],
at: Union[torch.Tensor, float],
rt: Union[torch.Tensor, float],
make_up: torch.Tensor,
lookahead_func=lambda x: x,
):
rms = avg_rms(x, avg_coef=avg_coef)
gain = compexp_gain(rms, cmp_th, cmp_ratio, exp_th, exp_ratio, at, rt)
gain = lookahead_func(gain)
return x * gain * db2amp(make_up).broadcast_to(x.shape[0], 1)
|