File size: 4,620 Bytes
d737ecd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
import numpy as np
from numba import njit, prange
from scipy.signal import firwin2
import torch

from .fx import Delay, FDN, module2coeffs


@njit
def rt_fdn(
    x: np.ndarray,
    delay_steps: np.ndarray,
    firs: np.ndarray,
    U: np.ndarray,
):
    _, T = x.shape
    M = delay_steps.shape[0]
    order = firs.shape[1]
    y = np.zeros_like(x)
    buf_size = delay_steps.max() + order
    delay_buf = np.zeros((M, buf_size), dtype=x.dtype)
    read_pointer = 0

    for t in range(T):
        # out = delay_buf[(range(M), read_pointers)]
        # for i in prange(M):
        #     out[i] = delay_buf[i, read_pointers[i]]
        out = delay_buf[:, read_pointer]
        y[:, t] = out

        s = out * firs[:, 0]
        # indexes = (read_pointers[:, None] - np.arange(1, order)) % buf_sizes[:, None]
        # reg = np.take_along_axis(delay_buf, indexes, axis=1)
        # s += firs[:, 1:] @ reg.T
        # for j in prange(M):
        #     s[j] += firs[j, 1:] @ delay_buf[j, indexes[j]]
        for i in prange(M):
            for j in prange(1, order):
                s[i] += firs[i, j] * delay_buf[i, (read_pointer - j) % buf_size]
        # for i in prange(1, order):
        #     s += firs[:, i] * delay_buf[:, (read_pointer - i) % buf_size]

        feedback = U @ s + x[:, t]
        w_pointers = (read_pointer + delay_steps) % buf_size
        # delay_buf[(range(M), w_pointers)] = s + B @ x[:, t]
        for i in prange(M):
            delay_buf[i, w_pointers[i]] = feedback[i]
        read_pointer = (read_pointer + 1) % buf_size

    return y


@njit
def rt_delay(
    x: np.ndarray,
    delay_step: int,
    b0: float,
    b1: float,
    b2: float,
    a1: float,
    a2: float,
):
    T = x.shape[0]
    y = np.zeros((2, T), dtype=x.dtype)
    buf_size = delay_step + 1
    read_pointer = 0
    delay_buf = np.zeros((2, buf_size), dtype=x.dtype)
    bq_buf = np.zeros((2, 2), dtype=x.dtype)

    for t in range(T):
        out = delay_buf[:, read_pointer]
        y[:, t] = out

        s = bq_buf[:, 0] + b0 * out
        bq_buf[:, 0] = bq_buf[:, 1] + b1 * out - a1 * s
        bq_buf[:, 1] = b2 * out - a2 * s

        w_pointer = (read_pointer + delay_step) % buf_size
        # cross feeding because of ping-pong delay
        delay_buf[0, w_pointer] = s[1] + x[t]
        delay_buf[1, w_pointer] = s[0]

        read_pointer = (read_pointer + 1) % buf_size

    return y


class RealTimeDelay(Delay):
    def forward(self, x):
        assert x.size(1) == 1, x.size()
        assert x.size(0) == 1, x.size()
        with torch.no_grad():
            delay_in_samples = round(self.sr * self.params.delay.item() * 0.001)
            feedback = self.params.feedback.item()

            if self.recursive_eq and self.eq is not None:
                b0, b1, b2, a0, a1, a2 = [p.item() for p in module2coeffs(self.eq)]
                b0, b1, b2, a1, a2 = b0 / a0, b1 / a0, b2 / a0, a1 / a0, a2 / a0
            else:
                b0, b1, b2, a1, a2 = 1.0, 0.0, 0.0, 0.0, 0.0

            b0 = b0 * feedback
            b1 = b1 * feedback
            b2 = b2 * feedback
            x_numpy = x.squeeze().cpu().numpy()
            y_numpy = rt_delay(x_numpy, delay_in_samples, b0, b1, b2, a1, a2)
        y = torch.from_numpy(y_numpy).unsqueeze(0).to(x.device) * self.params.gain
        return self.odd_pan(y[:, :1]) + self.even_pan(y[:, 1:])


class RealTimeFDN(FDN):
    def forward(self, x):
        assert x.size(1) == 2, x.size()
        assert x.size(0) == 1, x.size()
        with torch.no_grad():
            delays = self.delays if hasattr(self, "delays") else self.params.delays

            c = self.params.c
            b = self.params.b
            gamma = self.params.gamma.clone()

            if gamma.size(1) == 1:
                gamma = gamma ** (delays / delays.min())

            freqs = np.linspace(0, 1, gamma.size(0))
            firs = np.apply_along_axis(
                lambda x: firwin2(gamma.size(0) * 2 - 1, freqs, x, fs=2),
                1,
                gamma.cpu().numpy().T,
            ).astype(np.float32)
            shifted_delays = delays - firs.shape[1] // 2

            U = self.params.U

            x = b @ x.squeeze()

            y_numpy = rt_fdn(
                x.cpu().numpy(),
                # delays.cpu().numpy(),
                shifted_delays.cpu().numpy(),
                # firs.cpu().numpy(),
                firs,
                U.cpu().numpy(),
            )
            y = c @ torch.from_numpy(y_numpy).to(x.device)
            y = y.unsqueeze(0)

        if self.eq is not None:
            y = self.eq(y)
        return y