File size: 6,270 Bytes
3044e63
 
 
 
 
 
 
 
 
 
 
6e3fef9
 
3044e63
15fe46b
5146d8c
 
15fe46b
d50e76e
15fe46b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3044e63
 
 
 
6e3fef9
 
 
3044e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5146d8c
 
 
 
 
 
 
 
 
 
 
3044e63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
import gradio as gr
import numpy as np
import torch
import yaml
import json
import pyloudnorm as pyln
from hydra.utils import instantiate
from random import normalvariate
from soxr import resample
from functools import partial

from modules.utils import chain_functions, vec2statedict, get_chunks
from modules.fx import clip_delay_eq_Q


title_md = "# Vocal Effects Generator"
description_md = """
This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025.
In this demo, you can upload a raw vocal audio file (in mono) and apply random effects to make it sound better!

The effects consist of series of EQ, compressor, delay, and reverb.
The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain.
This interface allows you to control the first 10 principal components (PCs) of the generator, randomise them, and render the audio.
For the rest of the PCs, you can choose to randomise them or set them to zero.

To give you some idea, we emperically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness.
Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio.
We found sometimes the effects of least important PCs are more perceptible.
Try to play around with the sliders and buttons and see what you can come up with!

Currently only a portion of PCs are tweakable, but in the future we will add more controls and visualisation tools.
For example:
- Exposing all the PCs
- Directly controlling the parameters of the effects
- Visualising the PCA space
- Visualising the frequency responses/dynamic curves of the effects
- Exporting the effects settings as JSON files
"""

SLIDER_MAX = 3
SLIDER_MIN = -3
NUMBER_OF_PCS = 10
TEMPERATURE = 0.7
CONFIG_PATH = "presets/rt_config.yaml"
PCA_PARAM_FILE = "presets/internal/gaussian.npz"
INFO_PATH = "presets/internal/info.json"


with open(CONFIG_PATH) as fp:
    fx_config = yaml.safe_load(fp)["model"]

fx = instantiate(fx_config)
fx.eval()

pca_params = np.load(PCA_PARAM_FILE)
mean = pca_params["mean"]
cov = pca_params["cov"]
eigvals, eigvecs = np.linalg.eigh(cov)
eigvals = np.flip(eigvals, axis=0)[:75]
eigvecs = np.flip(eigvecs, axis=1)[:, :75]
U = eigvecs * np.sqrt(eigvals)
U = torch.from_numpy(U).float()
mean = torch.from_numpy(mean).float()


with open(INFO_PATH) as f:
    info = json.load(f)

param_keys = info["params_keys"]
original_shapes = list(
    map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"])
)

*vec2dict_args, _ = get_chunks(param_keys, original_shapes)
vec2dict_args = [param_keys, original_shapes] + vec2dict_args
vec2dict = partial(
    vec2statedict,
    **dict(
        zip(
            [
                "keys",
                "original_shapes",
                "selected_chunks",
                "position",
                "U_matrix_shape",
            ],
            vec2dict_args,
        )
    ),
)


meter = pyln.Meter(44100)


@torch.no_grad()
def inference(audio, randomise_rest, *pcs):
    sr, y = audio
    if sr != 44100:
        y = resample(y, sr, 44100)
    if y.dtype.kind != "f":
        y = y / 32768.0

    if y.ndim == 1:
        y = y[:, None]
    loudness = meter.integrated_loudness(y)
    y = pyln.normalize.loudness(y, loudness, -18.0)

    y = torch.from_numpy(y).float().T.unsqueeze(0)
    if y.shape[1] != 1:
        y = y.mean(dim=1, keepdim=True)

    M = eigvals.shape[0]
    z = torch.cat(
        [
            torch.tensor([float(x) for x in pcs]),
            (
                torch.randn(M - len(pcs)) * TEMPERATURE
                if randomise_rest
                else torch.zeros(M - len(pcs))
            ),
        ]
    )
    x = U @ z + mean

    fx.load_state_dict(vec2dict(x), strict=False)
    fx.apply(partial(clip_delay_eq_Q, Q=0.707))

    rendered = fx(y).squeeze(0).T.numpy()
    if np.max(np.abs(rendered)) > 1:
        rendered = rendered / np.max(np.abs(rendered))
    return (44100, (rendered * 32768).astype(np.int16))


def get_important_pcs(n=10, **kwargs):
    sliders = [
        gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs)
        for i in range(1, n + 1)
    ]
    return sliders


with gr.Blocks() as demo:
    gr.Markdown(
        title_md,
        elem_id="title",
    )
    with gr.Row():
        gr.Markdown(
            description_md,
            elem_id="description",
        )
        gr.Image("diffvox_diagram.png", elem_id="diagram")

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(type="numpy", sources="upload", label="Input Audio")
            with gr.Row():
                random_button = gr.Button(
                    f"Randomise the first {NUMBER_OF_PCS} PCs",
                    elem_id="randomise-button",
                )
                reset_button = gr.Button(
                    "Reset",
                    elem_id="reset-button",
                )
                render_button = gr.Button(
                    "Run", elem_id="render-button", variant="primary"
                )
            random_rest_checkbox = gr.Checkbox(
                label=f"Randomise PCs > {NUMBER_OF_PCS} (default to zeros)",
                value=False,
                elem_id="randomise-checkbox",
            )
            sliders = get_important_pcs(NUMBER_OF_PCS, value=0)
        with gr.Column():
            audio_output = gr.Audio(
                type="numpy", label="Output Audio", interactive=False
            )

    render_button.click(
        inference,
        inputs=[
            audio_input,
            random_rest_checkbox,
        ]
        + sliders,
        outputs=audio_output,
    )

    random_button.click(
        lambda *xs: [
            chain_functions(
                partial(max, SLIDER_MIN),
                partial(min, SLIDER_MAX),
            )(normalvariate(0, 1))
            for _ in range(len(xs))
        ],
        inputs=sliders,
        outputs=sliders,
    )
    reset_button.click(
        lambda *xs: [0 for _ in range(len(xs))],
        inputs=sliders,
        outputs=sliders,
    )

demo.launch()