Spaces:
Running
Running
File size: 6,270 Bytes
3044e63 6e3fef9 3044e63 15fe46b 5146d8c 15fe46b d50e76e 15fe46b 3044e63 6e3fef9 3044e63 5146d8c 3044e63 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
import gradio as gr
import numpy as np
import torch
import yaml
import json
import pyloudnorm as pyln
from hydra.utils import instantiate
from random import normalvariate
from soxr import resample
from functools import partial
from modules.utils import chain_functions, vec2statedict, get_chunks
from modules.fx import clip_delay_eq_Q
title_md = "# Vocal Effects Generator"
description_md = """
This is a demo of the paper [DiffVox: A Differentiable Model for Capturing and Analysing Professional Effects Distributions](https://arxiv.org/abs/2504.14735), accepted at DAFx 2025.
In this demo, you can upload a raw vocal audio file (in mono) and apply random effects to make it sound better!
The effects consist of series of EQ, compressor, delay, and reverb.
The generator is a PCA model derived from 365 vocal effects presets fitted with the same effects chain.
This interface allows you to control the first 10 principal components (PCs) of the generator, randomise them, and render the audio.
For the rest of the PCs, you can choose to randomise them or set them to zero.
To give you some idea, we emperically found that the first PC controls the amount of reverb and the second PC controls the amount of brightness.
Note that adding these PCs together does not necessarily mean that their effects are additive in the final audio.
We found sometimes the effects of least important PCs are more perceptible.
Try to play around with the sliders and buttons and see what you can come up with!
Currently only a portion of PCs are tweakable, but in the future we will add more controls and visualisation tools.
For example:
- Exposing all the PCs
- Directly controlling the parameters of the effects
- Visualising the PCA space
- Visualising the frequency responses/dynamic curves of the effects
- Exporting the effects settings as JSON files
"""
SLIDER_MAX = 3
SLIDER_MIN = -3
NUMBER_OF_PCS = 10
TEMPERATURE = 0.7
CONFIG_PATH = "presets/rt_config.yaml"
PCA_PARAM_FILE = "presets/internal/gaussian.npz"
INFO_PATH = "presets/internal/info.json"
with open(CONFIG_PATH) as fp:
fx_config = yaml.safe_load(fp)["model"]
fx = instantiate(fx_config)
fx.eval()
pca_params = np.load(PCA_PARAM_FILE)
mean = pca_params["mean"]
cov = pca_params["cov"]
eigvals, eigvecs = np.linalg.eigh(cov)
eigvals = np.flip(eigvals, axis=0)[:75]
eigvecs = np.flip(eigvecs, axis=1)[:, :75]
U = eigvecs * np.sqrt(eigvals)
U = torch.from_numpy(U).float()
mean = torch.from_numpy(mean).float()
with open(INFO_PATH) as f:
info = json.load(f)
param_keys = info["params_keys"]
original_shapes = list(
map(lambda lst: lst if len(lst) else [1], info["params_original_shapes"])
)
*vec2dict_args, _ = get_chunks(param_keys, original_shapes)
vec2dict_args = [param_keys, original_shapes] + vec2dict_args
vec2dict = partial(
vec2statedict,
**dict(
zip(
[
"keys",
"original_shapes",
"selected_chunks",
"position",
"U_matrix_shape",
],
vec2dict_args,
)
),
)
meter = pyln.Meter(44100)
@torch.no_grad()
def inference(audio, randomise_rest, *pcs):
sr, y = audio
if sr != 44100:
y = resample(y, sr, 44100)
if y.dtype.kind != "f":
y = y / 32768.0
if y.ndim == 1:
y = y[:, None]
loudness = meter.integrated_loudness(y)
y = pyln.normalize.loudness(y, loudness, -18.0)
y = torch.from_numpy(y).float().T.unsqueeze(0)
if y.shape[1] != 1:
y = y.mean(dim=1, keepdim=True)
M = eigvals.shape[0]
z = torch.cat(
[
torch.tensor([float(x) for x in pcs]),
(
torch.randn(M - len(pcs)) * TEMPERATURE
if randomise_rest
else torch.zeros(M - len(pcs))
),
]
)
x = U @ z + mean
fx.load_state_dict(vec2dict(x), strict=False)
fx.apply(partial(clip_delay_eq_Q, Q=0.707))
rendered = fx(y).squeeze(0).T.numpy()
if np.max(np.abs(rendered)) > 1:
rendered = rendered / np.max(np.abs(rendered))
return (44100, (rendered * 32768).astype(np.int16))
def get_important_pcs(n=10, **kwargs):
sliders = [
gr.Slider(minimum=SLIDER_MIN, maximum=SLIDER_MAX, label=f"PC {i}", **kwargs)
for i in range(1, n + 1)
]
return sliders
with gr.Blocks() as demo:
gr.Markdown(
title_md,
elem_id="title",
)
with gr.Row():
gr.Markdown(
description_md,
elem_id="description",
)
gr.Image("diffvox_diagram.png", elem_id="diagram")
with gr.Row():
with gr.Column():
audio_input = gr.Audio(type="numpy", sources="upload", label="Input Audio")
with gr.Row():
random_button = gr.Button(
f"Randomise the first {NUMBER_OF_PCS} PCs",
elem_id="randomise-button",
)
reset_button = gr.Button(
"Reset",
elem_id="reset-button",
)
render_button = gr.Button(
"Run", elem_id="render-button", variant="primary"
)
random_rest_checkbox = gr.Checkbox(
label=f"Randomise PCs > {NUMBER_OF_PCS} (default to zeros)",
value=False,
elem_id="randomise-checkbox",
)
sliders = get_important_pcs(NUMBER_OF_PCS, value=0)
with gr.Column():
audio_output = gr.Audio(
type="numpy", label="Output Audio", interactive=False
)
render_button.click(
inference,
inputs=[
audio_input,
random_rest_checkbox,
]
+ sliders,
outputs=audio_output,
)
random_button.click(
lambda *xs: [
chain_functions(
partial(max, SLIDER_MIN),
partial(min, SLIDER_MAX),
)(normalvariate(0, 1))
for _ in range(len(xs))
],
inputs=sliders,
outputs=sliders,
)
reset_button.click(
lambda *xs: [0 for _ in range(len(xs))],
inputs=sliders,
outputs=sliders,
)
demo.launch()
|