File size: 1,684 Bytes
2981ba9 e9dec3c 2981ba9 e9dec3c 2981ba9 e9dec3c 2981ba9 e9dec3c bcecfba e9dec3c 2981ba9 e9dec3c 2981ba9 e9dec3c 2981ba9 e9dec3c 2981ba9 e9dec3c 2981ba9 bcecfba 2981ba9 e9dec3c 2981ba9 e9dec3c 2981ba9 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 |
"""Demo for mistralai/Mistral-Small-Instruct-2409"""
from typing import List, Tuple, Union
import gradio as gr
from huggingface_hub import InferenceClient
# HF InferenceClient
client = InferenceClient("mistralai/Mistral-Small-Instruct-2409")
def chat(
message: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: Union[int, None],
temperature: Union[float, None],
top_p: Union[float, None],
):
"""Chat demo for mistralai/Mistral-Small-Instruct-2409"""
# Chat history
messages = [{"role": "system", "content": system_message}]
messages.extend(history)
# Add user message
messages.append({"role": "user", "content": message})
llm_message = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Add chatbot message
messages.append(
{
"role": "assistant",
"content": llm_message.choices[0].message.content,
}
)
yield llm_message.choices[0].message.content
# UI
demo = gr.ChatInterface(
chat,
type="messages",
title="Mistral-Small-Instruct-2409",
description="A small version of Mistral AI, designed for instruction following tasks.",
additional_inputs=[
gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
],
)
if __name__ == "__main__":
demo.launch()
|