File size: 1,684 Bytes
2981ba9
 
 
e9dec3c
 
 
2981ba9
 
 
e9dec3c
 
2981ba9
 
 
 
 
 
 
e9dec3c
2981ba9
 
 
e9dec3c
 
bcecfba
e9dec3c
2981ba9
e9dec3c
 
2981ba9
e9dec3c
 
 
 
2981ba9
 
 
 
 
 
 
 
 
 
 
e9dec3c
 
2981ba9
e9dec3c
2981ba9
bcecfba
2981ba9
 
e9dec3c
 
 
 
2981ba9
e9dec3c
 
 
 
 
2981ba9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
"""Demo for mistralai/Mistral-Small-Instruct-2409"""

from typing import List, Tuple, Union
import gradio as gr
from huggingface_hub import InferenceClient


# HF InferenceClient
client = InferenceClient("mistralai/Mistral-Small-Instruct-2409")


def chat(
    message: str,
    history: List[Tuple[str, str]],
    system_message: str,
    max_tokens: Union[int, None],
    temperature: Union[float, None],
    top_p: Union[float, None],
):
    """Chat demo for mistralai/Mistral-Small-Instruct-2409"""

    # Chat history
    messages = [{"role": "system", "content": system_message}]

    messages.extend(history)

    # Add user message
    messages.append({"role": "user", "content": message})

    llm_message = client.chat_completion(
        messages,
        max_tokens=max_tokens,
        temperature=temperature,
        top_p=top_p,
    )

    # Add chatbot message
    messages.append(
        {
            "role": "assistant",
            "content": llm_message.choices[0].message.content,
        }
    )

    yield llm_message.choices[0].message.content


# UI
demo = gr.ChatInterface(
    chat,
    type="messages",
    title="Mistral-Small-Instruct-2409",
    description="A small version of Mistral AI, designed for instruction following tasks.",
    additional_inputs=[
        gr.Textbox(value="You are a friendly Chatbot.", label="System message"),
        gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"),
        gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"),
        gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-p"),
    ],
)


if __name__ == "__main__":
    demo.launch()