Spaces:
Sleeping
Sleeping
File size: 2,178 Bytes
862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f 43e1780 862772f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 |
""" Star Coder2 chat demo """
from typing import List, Tuple, Union
import gradio as gr
from huggingface_hub import InferenceClient
# HF InferenceClient
client = InferenceClient("microsoft/Phi-3.5-mini-instruct")
def chat(
message: str,
history: List[Tuple[str, str]],
system_message: str,
max_tokens: Union[int, None],
temperature: Union[float, None],
top_p: Union[float, None],
):
"""Code assistant"""
# Chat history
messages = [{"role": "system", "content": system_message}]
for val in history:
if val[0]:
messages.append({"role": "user", "content": val[0]})
if val[1]:
messages.append({"role": "assistant", "content": val[1]})
# Add user message
messages.append({"role": "user", "content": message})
llm_message = client.chat_completion(
messages,
max_tokens=max_tokens,
temperature=temperature,
top_p=top_p,
)
# Add chatbot message
messages.append(
{
"role": "assistant",
"content": llm_message.choices[0].message.content,
}
)
yield llm_message.choices[0].message.content
# UI
demo = gr.ChatInterface(
chat,
title="Phi-3.5-mini-instruct",
theme="soft",
description="Phi-3.5-mini is a lightweight, state-of-the-art open model built upon "
"datasets used for Phi-3 - synthetic data and filtered publicly available websites - "
"with a focus on very high-quality, reasoning dense data.",
additional_inputs=[
gr.Textbox(
value="You are a friendly chatbot.",
label="System message",
),
gr.Slider(
minimum=1,
maximum=2048,
value=512,
step=1,
label="Max new tokens",
),
gr.Slider(
minimum=0.1,
maximum=4.0,
value=0.7,
step=0.1,
label="Temperature",
),
gr.Slider(
minimum=0.1,
maximum=1.0,
value=0.95,
step=0.05,
label="Top-p",
),
],
)
if __name__ == "__main__":
demo.launch()
|