File size: 18,267 Bytes
28d8f8e e4256df 3349c56 e4256df 28d8f8e e4256df 28d8f8e e4256df 28d8f8e e4256df 28d8f8e c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 8f8763e e4256df 8f8763e 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 8f8763e c2215d0 0e7f220 c2215d0 8f8763e c2215d0 0e7f220 c2215d0 0e7f220 8f8763e 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 8f8763e 0e7f220 8f8763e 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 c2215d0 0e7f220 8f8763e 28d8f8e e4256df 28d8f8e c2215d0 28d8f8e c2215d0 e4256df 28d8f8e e4256df 28d8f8e e4256df 28d8f8e e4256df 28d8f8e e4256df 28d8f8e e4256df 28d8f8e c2215d0 28d8f8e e4256df c2215d0 e4256df |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 |
from flask import Flask, jsonify, request, send_file
import threading
import time
import os
import tempfile
import shutil
import uuid
import zipfile
import io
from datetime import datetime, timedelta
app = Flask(__name__)
# Global variables to track training progress
training_jobs = {}
class TrainingProgress:
def __init__(self, job_id):
self.job_id = job_id
self.status = "initializing"
self.progress = 0
self.current_step = 0
self.total_steps = 0
self.start_time = time.time()
self.estimated_finish_time = None
self.message = "Starting training..."
self.error = None
self.model_path = None
self.detected_columns = None
def update_progress(self, current_step, total_steps, message=""):
self.current_step = current_step
self.total_steps = total_steps
self.progress = (current_step / total_steps) * 100 if total_steps > 0 else 0
self.message = message
# Calculate estimated finish time
if current_step > 0:
elapsed_time = time.time() - self.start_time
time_per_step = elapsed_time / current_step
remaining_steps = total_steps - current_step
estimated_remaining_time = remaining_steps * time_per_step
self.estimated_finish_time = datetime.now() + timedelta(seconds=estimated_remaining_time)
def to_dict(self):
return {
"job_id": self.job_id,
"status": self.status,
"progress": round(self.progress, 2),
"current_step": self.current_step,
"total_steps": self.total_steps,
"message": self.message,
"estimated_finish_time": self.estimated_finish_time.isoformat() if self.estimated_finish_time else None,
"error": self.error,
"model_path": self.model_path,
"detected_columns": self.detected_columns
}
def detect_qa_columns(dataset):
"""Automatically detect question and answer columns in the dataset"""
# Common patterns for question columns
question_patterns = [
'question', 'prompt', 'input', 'query', 'patient', 'user', 'human',
'instruction', 'context', 'q', 'text', 'source'
]
# Common patterns for answer columns
answer_patterns = [
'answer', 'response', 'output', 'reply', 'doctor', 'assistant', 'ai',
'completion', 'target', 'a', 'label', 'ground_truth'
]
# Get column names
columns = list(dataset.column_names)
# Find question column
question_col = None
for pattern in question_patterns:
for col in columns:
if pattern.lower() in col.lower():
question_col = col
break
if question_col:
break
# Find answer column
answer_col = None
for pattern in answer_patterns:
for col in columns:
if pattern.lower() in col.lower() and col != question_col:
answer_col = col
break
if answer_col:
break
# Fallback: use first two text columns if patterns don't match
if not question_col or not answer_col:
text_columns = []
for col in columns:
# Check if column contains text data
sample = dataset[0][col]
if isinstance(sample, str) and len(sample.strip()) > 0:
text_columns.append(col)
if len(text_columns) >= 2:
question_col = text_columns[0]
answer_col = text_columns[1]
elif len(text_columns) == 1:
# Single column case - use it for both (self-supervised)
question_col = answer_col = text_columns[0]
return question_col, answer_col
def train_model_background(job_id, dataset_name, base_model_name=None):
"""Background training function with progress tracking"""
progress = training_jobs[job_id]
try:
# Create a temporary directory for this job
temp_dir = tempfile.mkdtemp(prefix=f"train_{job_id}_")
# Set environment variables for caching
os.environ['HF_HOME'] = temp_dir
os.environ['TRANSFORMERS_CACHE'] = temp_dir
os.environ['HF_DATASETS_CACHE'] = temp_dir
os.environ['TORCH_HOME'] = temp_dir
progress.status = "loading_libraries"
progress.message = "Loading required libraries..."
# Import heavy libraries after setting cache paths
import torch
from datasets import load_dataset, Dataset
from huggingface_hub import login
from transformers import (
AutoModelForCausalLM,
AutoTokenizer,
TrainingArguments,
Trainer,
TrainerCallback,
)
from peft import (
LoraConfig,
get_peft_model,
)
# === Authentication ===
hf_token = os.getenv('HF_TOKEN')
if hf_token:
login(token=hf_token)
progress.status = "loading_model"
progress.message = "Loading base model and tokenizer..."
# === Configuration ===
base_model = base_model_name or "microsoft/DialoGPT-small"
new_model = f"trained-model-{job_id}"
max_length = 256
# === Load Model and Tokenizer ===
model = AutoModelForCausalLM.from_pretrained(
base_model,
cache_dir=temp_dir,
torch_dtype=torch.float32,
device_map="auto" if torch.cuda.is_available() else "cpu",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(
base_model,
cache_dir=temp_dir,
trust_remote_code=True
)
# Add padding token if not present
if tokenizer.pad_token is None:
tokenizer.pad_token = tokenizer.eos_token
# Resize token embeddings if needed
model.resize_token_embeddings(len(tokenizer))
progress.status = "preparing_model"
progress.message = "Setting up LoRA configuration..."
# === LoRA Config ===
peft_config = LoraConfig(
r=8,
lora_alpha=16,
lora_dropout=0.1,
bias="none",
task_type="CAUSAL_LM",
)
model = get_peft_model(model, peft_config)
progress.status = "loading_dataset"
progress.message = "Loading and preparing dataset..."
# === Load & Prepare Dataset ===
dataset = load_dataset(
dataset_name,
split="train" if "train" in load_dataset(dataset_name, cache_dir=temp_dir).keys() else "all",
cache_dir=temp_dir,
trust_remote_code=True
)
# Automatically detect question and answer columns
question_col, answer_col = detect_qa_columns(dataset)
if not question_col or not answer_col:
raise ValueError("Could not automatically detect question and answer columns in the dataset")
progress.detected_columns = {"question": question_col, "answer": answer_col}
progress.message = f"Detected columns - Question: {question_col}, Answer: {answer_col}"
# Use subset for faster testing (can be made configurable)
dataset = dataset.shuffle(seed=65).select(range(min(1000, len(dataset))))
# Custom dataset class for proper handling
class CustomDataset(torch.utils.data.Dataset):
def __init__(self, texts, tokenizer, max_length):
self.texts = texts
self.tokenizer = tokenizer
self.max_length = max_length
def __len__(self):
return len(self.texts)
def __getitem__(self, idx):
text = self.texts[idx]
# Tokenize the text
encoding = self.tokenizer(
text,
truncation=True,
padding='max_length',
max_length=self.max_length,
return_tensors='pt'
)
# Flatten the tensors (remove batch dimension)
input_ids = encoding['input_ids'].squeeze()
attention_mask = encoding['attention_mask'].squeeze()
# For causal language modeling, labels are the same as input_ids
labels = input_ids.clone()
# Set labels to -100 for padding tokens (they won't contribute to loss)
labels[attention_mask == 0] = -100
return {
'input_ids': input_ids,
'attention_mask': attention_mask,
'labels': labels
}
# Prepare texts using detected columns
texts = []
for item in dataset:
question = str(item[question_col]).strip()
answer = str(item[answer_col]).strip()
text = f"Question: {question}\nAnswer: {answer}{tokenizer.eos_token}"
texts.append(text)
# Create custom dataset
train_dataset = CustomDataset(texts, tokenizer, max_length)
# Calculate total training steps
batch_size = 2
gradient_accumulation_steps = 1
num_epochs = 1
steps_per_epoch = len(train_dataset) // (batch_size * gradient_accumulation_steps)
total_steps = steps_per_epoch * num_epochs
progress.total_steps = total_steps
progress.status = "training"
progress.message = "Starting training..."
# === Training Arguments ===
output_dir = os.path.join(temp_dir, new_model)
os.makedirs(output_dir, exist_ok=True)
training_args = TrainingArguments(
output_dir=output_dir,
per_device_train_batch_size=batch_size,
gradient_accumulation_steps=gradient_accumulation_steps,
num_train_epochs=num_epochs,
logging_steps=1,
save_steps=max(1, total_steps // 2),
save_total_limit=1,
learning_rate=5e-5,
warmup_steps=2,
logging_strategy="steps",
save_strategy="steps",
fp16=False,
bf16=False,
dataloader_num_workers=0,
remove_unused_columns=False,
report_to=None,
prediction_loss_only=True,
)
# Custom callback to track progress
class ProgressCallback(TrainerCallback):
def __init__(self, progress_tracker):
self.progress_tracker = progress_tracker
self.last_update = time.time()
def on_log(self, args, state, control, model=None, logs=None, **kwargs):
current_time = time.time()
# Update every 3 seconds
if current_time - self.last_update >= 3:
self.progress_tracker.update_progress(
state.global_step,
state.max_steps,
f"Training step {state.global_step}/{state.max_steps}"
)
self.last_update = current_time
# Log training metrics if available
if logs:
loss = logs.get('train_loss', logs.get('loss', 'N/A'))
self.progress_tracker.message = f"Step {state.global_step}/{state.max_steps}, Loss: {loss}"
def on_train_begin(self, args, state, control, **kwargs):
self.progress_tracker.status = "training"
self.progress_tracker.message = "Training started..."
def on_train_end(self, args, state, control, **kwargs):
self.progress_tracker.status = "saving"
self.progress_tracker.message = "Training complete, saving model..."
# === Trainer Initialization ===
trainer = Trainer(
model=model,
args=training_args,
train_dataset=train_dataset,
callbacks=[ProgressCallback(progress)],
tokenizer=tokenizer,
)
# === Train & Save ===
trainer.train()
trainer.save_model(output_dir)
tokenizer.save_pretrained(output_dir)
# Save model info
progress.model_path = output_dir
progress.status = "completed"
progress.progress = 100
progress.message = f"Training completed! Model ready for download."
# Keep the temp directory for download (cleanup after 1 hour)
def cleanup_temp_dir():
time.sleep(3600) # Wait 1 hour before cleanup
try:
shutil.rmtree(temp_dir)
# Remove from training_jobs after cleanup
if job_id in training_jobs:
del training_jobs[job_id]
except:
pass
cleanup_thread = threading.Thread(target=cleanup_temp_dir)
cleanup_thread.daemon = True
cleanup_thread.start()
except Exception as e:
progress.status = "error"
progress.error = str(e)
progress.message = f"Training failed: {str(e)}"
# Clean up on error
try:
if 'temp_dir' in locals():
shutil.rmtree(temp_dir)
except:
pass
def create_model_zip(model_path, job_id):
"""Create a zip file containing the trained model"""
memory_file = io.BytesIO()
with zipfile.ZipFile(memory_file, 'w', zipfile.ZIP_DEFLATED) as zf:
for root, dirs, files in os.walk(model_path):
for file in files:
file_path = os.path.join(root, file)
arc_name = os.path.relpath(file_path, model_path)
zf.write(file_path, arc_name)
memory_file.seek(0)
return memory_file
# ============== API ROUTES ==============
@app.route('/api/train', methods=['POST'])
def start_training():
"""Start training and return job ID for tracking"""
try:
data = request.get_json() if request.is_json else {}
dataset_name = data.get('dataset_name', 'ruslanmv/ai-medical-chatbot')
base_model_name = data.get('base_model', 'microsoft/DialoGPT-small')
job_id = str(uuid.uuid4())[:8] # Short UUID
progress = TrainingProgress(job_id)
training_jobs[job_id] = progress
# Start training in background thread
training_thread = threading.Thread(
target=train_model_background,
args=(job_id, dataset_name, base_model_name)
)
training_thread.daemon = True
training_thread.start()
return jsonify({
"status": "started",
"job_id": job_id,
"dataset_name": dataset_name,
"base_model": base_model_name,
"message": "Training started. Use /api/status/<job_id> to track progress."
})
except Exception as e:
return jsonify({"status": "error", "message": str(e)}), 500
@app.route('/api/status/<job_id>', methods=['GET'])
def get_training_status(job_id):
"""Get training progress and estimated completion time"""
if job_id not in training_jobs:
return jsonify({"status": "error", "message": "Job not found"}), 404
progress = training_jobs[job_id]
return jsonify(progress.to_dict())
@app.route('/api/download/<job_id>', methods=['GET'])
def download_model(job_id):
"""Download the trained model as a zip file"""
if job_id not in training_jobs:
return jsonify({"status": "error", "message": "Job not found"}), 404
progress = training_jobs[job_id]
if progress.status != "completed":
return jsonify({
"status": "error",
"message": f"Model not ready for download. Current status: {progress.status}"
}), 400
if not progress.model_path or not os.path.exists(progress.model_path):
return jsonify({
"status": "error",
"message": "Model files not found. They may have been cleaned up."
}), 404
try:
# Create zip file in memory
zip_file = create_model_zip(progress.model_path, job_id)
return send_file(
zip_file,
as_attachment=True,
download_name=f"trained_model_{job_id}.zip",
mimetype='application/zip'
)
except Exception as e:
return jsonify({"status": "error", "message": f"Download failed: {str(e)}"}), 500
@app.route('/api/jobs', methods=['GET'])
def list_jobs():
"""List all training jobs"""
jobs = {job_id: progress.to_dict() for job_id, progress in training_jobs.items()}
return jsonify({"jobs": jobs})
@app.route('/')
def home():
return jsonify({
"message": "Welcome to Enhanced LLaMA Fine-tuning API!",
"features": [
"Automatic question/answer column detection",
"Configurable base model and dataset",
"Local model download",
"Progress tracking with ETA"
],
"endpoints": {
"POST /api/train": "Start training (accepts dataset_name and base_model in JSON)",
"GET /api/status/<job_id>": "Get training status and detected columns",
"GET /api/download/<job_id>": "Download trained model as zip",
"GET /api/jobs": "List all jobs"
},
"usage_example": {
"start_training": {
"method": "POST",
"url": "/api/train",
"body": {
"dataset_name": "your-dataset-name",
"base_model": "microsoft/DialoGPT-small"
}
}
}
})
@app.route('/health')
def health():
return jsonify({"status": "healthy"})
if __name__ == '__main__':
port = int(os.environ.get('PORT', 7860)) # HF Spaces uses port 7860
app.run(host='0.0.0.0', port=port, debug=False) |