Spaces:
Running
Running
File size: 40,802 Bytes
5f52527 5b729df 5f52527 67f0b1c 5f52527 67f0b1c 5f52527 10c7644 67f0b1c 10c7644 67f0b1c 65c85da 10c7644 67f0b1c 10c7644 5f52527 65c85da e6976d6 65c85da e6976d6 65c85da 08ce423 65c85da e6976d6 65c85da 5f52527 480eb72 5f52527 67f0b1c f941393 67f0b1c b3c91e5 5f52527 168d99e 5f52527 f941393 5f52527 4466935 67f0b1c 4466935 67f0b1c 4466935 67f0b1c 5f52527 67f0b1c 5f52527 67f0b1c 4466935 67f0b1c 5f52527 8efae68 5f52527 8efae68 4466935 8efae68 5f52527 8efae68 5f52527 8efae68 5f52527 f941393 5f52527 f941393 5f52527 f941393 5f52527 f941393 5f52527 f941393 5f52527 f941393 5f52527 f941393 5f52527 67f0b1c 5f52527 f941393 5f52527 f941393 5f52527 4466935 67f0b1c e6976d6 67f0b1c f941393 67f0b1c e6976d6 67f0b1c 65c85da e6976d6 f941393 65c85da e6976d6 65c85da e6976d6 65c85da e6976d6 65c85da e6976d6 65c85da f941393 67f0b1c 65c85da f941393 65c85da f941393 65c85da f941393 e6976d6 65c85da e6976d6 4466935 e6976d6 65c85da 67f0b1c 65c85da e6976d6 8efae68 5b729df 8efae68 4466935 8efae68 e6976d6 65c85da e6976d6 65c85da e6976d6 65c85da e6976d6 65c85da e6976d6 65c85da 08ce423 65c85da e6976d6 65c85da 6c1d0ee 10c7644 67f0b1c 10c7644 9b76f9e 5f52527 d635c79 5b729df a7b441f 818363c a7b441f 818363c a7b441f 67f0b1c 5f52527 67f0b1c 4466935 5f52527 67f0b1c 9b76f9e 67f0b1c 9b76f9e b3c91e5 5f52527 67f0b1c e6976d6 67f0b1c e6976d6 67f0b1c 9b76f9e 67f0b1c 5f52527 818363c 5b729df 67f0b1c 5f52527 f941393 b3c91e5 e6976d6 8efae68 e6976d6 5f52527 67f0b1c 5f52527 168d99e 5f52527 e6976d6 5f52527 67f0b1c 5f52527 67f0b1c 5f52527 818363c 5f52527 67f0b1c f941393 5f52527 e6976d6 65c85da e6976d6 65c85da b3c91e5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 |
import re
from fastapi import FastAPI
from fastapi import Header
from pydantic import BaseModel
from transformers import pipeline, AutoTokenizer, AutoModelForSeq2SeqLM, AutoModelForTokenClassification
import dateparser
from datetime import datetime
from langdetect import detect_langs
from textblob import TextBlob
from dateparser.search import search_dates
import uuid
import time
import warnings
warnings.filterwarnings("ignore", category=FutureWarning)
warnings.filterwarnings("ignore", category=UserWarning)
from fastapi.middleware.cors import CORSMiddleware
from fastapi.responses import JSONResponse
from fastapi.responses import ORJSONResponse
from fastapi.requests import Request
from fastapi import status
import asyncio
import psycopg2
from psycopg2.extras import Json
import os
from dotenv import load_dotenv
# Load environment variables
load_dotenv()
DATABASE_URL = os.getenv("DATABASE_URL")
app = FastAPI(default_response_class=ORJSONResponse)
app.add_middleware(
CORSMiddleware,
allow_origins=["*"], # or your domain(s)
allow_credentials=True,
allow_methods=["*"],
allow_headers=["*"],
)
CREATE_TABLE_QUERY = """
CREATE TABLE IF NOT EXISTS user_entries (
uuid UUID PRIMARY KEY,
user_id TEXT,
user_name TEXT,
uese_email TEXT,
raw_text TEXT,
word_count INT,
day_of_week TEXT,
hour_of_day INT,
month TEXT,
year INT,
type TEXT,
expense_type TEXT,
intent TEXT,
confidence_scores JSONB,
urgency_score INT,
time_mentions TEXT[],
parsed_dates TEXT[],
tense TEXT[],
summary TEXT,
people TEXT[],
mood TEXT,
language JSONB,
sentiment_score FLOAT,
tags TEXT[],
action_required BOOLEAN,
entities JSONB,
amounts JSONB,
stores JSONB,
processing_time_ms INT,
raw_json JSONB,
created_at TIMESTAMPTZ DEFAULT now()
);
"""
@app.on_event("startup")
def run_migrations():
try:
conn = psycopg2.connect(DATABASE_URL)
cur = conn.cursor()
cur.execute(CREATE_TABLE_QUERY)
conn.commit()
cur.close()
conn.close()
print("β
Table checked/created at startup.")
except Exception as e:
print("β Migration failed:", e)
# Load classification and summarization models
classifier = pipeline("zero-shot-classification", model="joeddav/xlm-roberta-large-xnli")
summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-base")
summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-base")
# classifier = pipeline("zero-shot-classification", model="facebook/bart-large-mnli")
# summarizer_tokenizer = AutoTokenizer.from_pretrained("google/flan-t5-small")
# summarizer_model = AutoModelForSeq2SeqLM.from_pretrained("google/flan-t5-small")
# Load Indic NER (or any general one)
tokenizer = AutoTokenizer.from_pretrained("dslim/bert-base-NER")
model = AutoModelForTokenClassification.from_pretrained("dslim/bert-base-NER")
ner_pipeline = pipeline("ner", model=model, tokenizer=tokenizer, aggregation_strategy="simple")
# Labels for classification
labels = [
"task (something to be done or completed)",
"event (an activity that is happening or has happened)",
"reminder (a message to remember something in the future)",
"meeting (a planned gathering between people to discuss something)",
"relationship (message about personal or emotional connection with someone)",
"note (general note or quick thought not related to any specific category)",
"journal (personal reflection or emotional writing about one's day or thoughts)",
"memory (recollection or recording of a past moment or experience)",
"status_update (current condition, feeling, or situation being shared)",
"sick_notice (informing about illness or not feeling well)",
"out_of_office (message about being unavailable for work or responsibilities)",
"travel_plan (planning or mentioning a trip or journey)",
"celebration (message about a festive occasion, party or achievement)",
"expense (money spent on something, either small or large)",
"news (update about public events, announcements, or current affairs)",
"information (factual content or informative message not tied to user activity)",
"purchase (buying or ordering something, like a product or service)",
"other (does not clearly fall into any specific category)"
]
POPULAR_STORES = {
"amazon": "shopping",
"flipkart": "shopping",
"myntra": "fashion",
"swiggy": "food",
"zomato": "food",
"uber": "transport",
"ola": "transport",
"bigbasket": "groceries",
"blinkit": "groceries",
"jiomart": "groceries",
"netflix": "entertainment",
"hotstar": "entertainment",
"airbnb": "travel",
"makemytrip": "travel",
"bookmyshow": "entertainment",
"dunzo": "delivery",
"meesho": "shopping",
"nykaa": "beauty",
"instamart": "groceries",
"apple": "electronics",
"google": "services"
}
expense_keywords = [
"paid", "bought", "purchased", "ordered", "spent", "payment",
"recharged", "booked", "transaction", "debit", "renewed",
"credit card", "cash", "amount", "transfer", "EMI", "wallet",
"petrol", "bill", "invoice", "kharida", "kharcha", "kharch", "bill", "paisa", "khareed", "order", "le liya", "diya", "khud diya", "khud kharida",
"expense", "cost", "buy", "buying", "purchase", "purchased", "paid for", "paid to", "paid via", "paid using",
"expense", "expenses", "costs", "costing", "bills", "bought from", "ordered from", "paid at",
"paid online", "paid cash", "paid card", "paid wallet", "paid app", "paid through", "paid via",
"khariden", "kharidi"
]
class TextInput(BaseModel):
text: str
user_id: str
# Function to detect popular store categories in the text
def detect_store_category(text: str):
found_stores = []
lowered = text.lower()
for store, category in POPULAR_STORES.items():
if store in lowered:
found_stores.append({
"store": store,
"category": category
})
return found_stores
# Function to extract dates and time mentions based on regex patterns
def extract_dates_with_accuracy(text: str, amounts: list = None):
amounts = amounts or []
amount_values = {str(int(a["value"])) for a in amounts if isinstance(a["value"], (int, float))}
original_text = text
text_lower = text.lower()
# Step 1: Replace Hinglish phrases with English equivalents (only for parsing)
hinglish_map = {
"aaj": "today",
"kal": "tomorrow", # Assuming future
"parso": "day after tomorrow",
"abhi": "now",
"subah": "morning",
"shaam": "evening",
"raat ko": "night",
"agli baar": "next time",
"agli hafte": "next week",
"agli mahine": "next month",
"iss hafte": "this week",
"iss mahine": "this month",
"pichhle hafte": "last week",
"tareekh": "date",
"do din baad": "in 2 days",
"teen din baad": "in 3 days",
}
replaced_text = text_lower
for h_word, en_word in hinglish_map.items():
replaced_text = re.sub(rf"\b{re.escape(h_word)}\b", en_word, replaced_text)
# Step 2: Parse using dateparser
results = search_dates(replaced_text, settings={
"PREFER_DATES_FROM": "future",
"RELATIVE_BASE": datetime.now(),
"RETURN_AS_TIMEZONE_AWARE": False,
"STRICT_PARSING": True,
})
time_mentions = []
parsed_dates = []
if results:
for phrase, date in results:
clean_phrase = phrase.strip().lower()
if clean_phrase in amount_values:
continue
if clean_phrase in {"on", "at", "in", "by", "to", "of"}:
continue
if re.fullmatch(r"\d{3,4}", clean_phrase): # skip 2025, 1200
continue
time_mentions.append(clean_phrase)
parsed_dates.append(date.isoformat())
return time_mentions, parsed_dates
def detect_tense(parsed_dates):
now = datetime.now()
tenses = set()
for d in parsed_dates:
dt = dateparser.parse(d)
if not dt:
continue
if dt < now:
tenses.add("past")
elif dt > now:
tenses.add("future")
else:
tenses.add("present")
return list(tenses) if tenses else ["unknown"]
def generate_summary(text):
input_ids = summarizer_tokenizer("summarize: " + text, return_tensors="pt").input_ids
output_ids = summarizer_model.generate(input_ids, max_length=60, num_beams=4, early_stopping=True)
return summarizer_tokenizer.decode(output_ids[0], skip_special_tokens=True)
def estimate_mood(text):
text_lower = text.lower()
# Expanded mood map with Hindi/Hinglish and phrases
mood_map = {
"happy": [
"happy", "excited", "good", "joy", "grateful", "glad", "pleased", "content", "satisfied", "cheerful", "elated",
"maza aa gaya", "achha lag raha hai", "khush", "khushi", "badiya", "mast", "enjoy", "enjoyed", "mazedaar", "achha"
],
"sad": [
"sad", "upset", "crying", "lonely", "depressed", "down", "disappointed", "heartbroken", "unhappy",
"bura lag raha hai", "dukhi", "udaas", "rona", "rona aa gaya", "dil toot gaya", "nirash"
],
"angry": [
"angry", "annoyed", "frustrated", "irritated", "mad", "furious", "gussa", "gusse mein", "chidh", "naraz",
"bhadak gaya", "chidh gaya", "irritate", "irritated"
],
"nervous": [
"nervous", "anxious", "scared", "worried", "fearful", "uneasy", "tensed", "tension", "ghabrahat", "chinta",
"parishan", "dara hua", "ghabra gaya", "stress", "stressed"
],
"unwell": [
"sick", "unwell", "not feeling well", "fever", "cold", "headache", "flu", "ill", "nauseous", "dizzy",
"thak gaya", "thaka hua", "bimaar", "bimar", "bukhar", "sardard", "beemar", "kamjor", "thakan"
],
"neutral": [
"ok", "fine", "theek", "normal", "usual", "routine", "nothing special", "kuch khaas nahi", "no stress"
]
}
detected_moods = []
for mood, keywords in mood_map.items():
for kw in keywords:
if kw in text_lower:
detected_moods.append(mood)
break # Only need one match per mood
# Use sentiment as a fallback if no mood keyword matched
if not detected_moods:
sentiment = get_sentiment_score(text)
if sentiment > 0.2:
return "happy"
elif sentiment < -0.2:
return "sad"
else:
return "neutral"
# Priority: angry > sad > unwell > nervous > happy > neutral
priority = ["angry", "sad", "unwell", "nervous", "happy", "neutral"]
for mood in priority:
if mood in detected_moods:
return mood
return "neutral"
def generate_tags(label, text):
# Define stopwords manually (lightweight and fast)
stopwords = set([
"or", "to", "also", "the", "and", "a", "an", "in", "on", "of", "for",
"with", "at", "by", "from", "as", "is", "was", "are", "be", "will",
"has", "have", "it", "this", "that", "but", "if", "not", "so", "do",
"does", "did", "am", "can", "i", "me", "my", "you", "we", "they", "he", "she"
])
base_tags = [label]
# Extract keywords (only alphabetic words with 4 or more letters)
keywords = re.findall(r'\b[a-zA-Z]{4,}\b', text.lower())
# Filter out stopwords
filtered_keywords = [word for word in keywords if word not in stopwords]
# Add forced tags based on context
force_tags = []
lowered = text.lower()
if any(w in lowered for w in ["sick", "unwell", "not feeling well", "fever"]):
force_tags += ["sick", "leave"]
if "work" in lowered:
force_tags.append("work")
# Merge and deduplicate tags
return list(set(base_tags + force_tags + filtered_keywords))
# Detect language using langdetect
def detect_language(text):
langs = detect_langs(text) # returns list like: [en:0.99, hi:0.01]
if langs:
top_lang = langs[0]
return {"lang": top_lang.lang, "prob": round(top_lang.prob, 6)}
return {"lang": "unknown", "prob": 0}
# Detect sentiment using TextBlob
def get_sentiment_score(text):
try:
blob = TextBlob(text)
return round(blob.sentiment.polarity, 3) # Range: -1 to 1
except:
return 0.0
# Infer intent based on label
def infer_intent(label, text):
label_to_intent = {
"out_of_office": "taking_leave",
"sick_notice": "taking_leave",
"reminder": "set_reminder",
"event": "log_event",
"meeting": "schedule_meeting",
"note": "log_note",
"journal": "log_memory",
"memory": "log_memory",
"status_update": "status_update",
"task": "create_task",
"celebration": "log_event"
}
return label_to_intent.get(label, "other")
# Extract entities using NER
def extract_entities(text):
ner_results = ner_pipeline(text)
entities = {"people": [], "places": [], "organizations": [], "dates": [], "misc": []}
PLACE_KEYWORDS = [
"garden", "hotel", "resort", "mall", "restaurant", "cafe", "market",
"school", "college", "temple", "station", "airport", "hospital",
"park", "store", "shop", "gym", "theater", "cinema", "bank", "office",
"court", "salon", "studio", "museum", "library", "club", "university",
"guest house", "hostel", "canteen", "clinic", "zoo", "residency", "apartment"
]
RELATION_KEYWORDS = [
# English
"mom", "dad", "father", "mother", "sister", "brother", "sis", "bro",
"uncle", "aunt", "aunty", "cousin", "grandfather", "grandmother",
"grandpa", "grandma", "wife", "husband", "son", "daughter", "child",
"kids", "baby", "partner", "fiancΓ©", "fiancΓ©e", "in-laws", "relatives",
"friend", "colleague", "buddy", "pal", "mate", "acquaintance", "companion",
"girlfriend", "boyfriend", "lover", "spouse", "significant other",
# Hindi & Hinglish
"maa", "mummy", "papa", "pappa", "pitaji", "mataji", "didi", "behen", "bhai",
"chacha", "chachi", "mama", "mami", "tau", "tai", "nana", "nani",
"dada", "dadi", "sasur", "sasuma", "jija", "saali", "bhabhi", "devar",
"nandoi", "patni", "pati", "bachcha", "baccha", "beta", "beti", "putra", "putri",
"sambandhi", "rishtedaar", "saheli", "dost", "yara", "saathi"
]
for ent in ner_results:
word = ent["word"].replace("##", "")
if len(word) <= 2 or not word.isalpha():
continue # skip single-letter non-words
group = ent["entity_group"]
if group == "PER":
entities["people"].append(word)
elif group == "LOC":
entities["places"].append(word)
elif group == "ORG":
entities["organizations"].append(word)
elif group == "DATE":
entities["dates"].append(word)
else:
entities["misc"].append(word)
# β
Fallback: Add known days/dates if not already captured
day_keywords = re.findall(r'\b(Monday|Tuesday|Wednesday|Thursday|Friday|Saturday|Sunday)\b', text, re.IGNORECASE)
for day in day_keywords:
if day not in entities["dates"]:
entities["dates"].append(day)
# β
Fallback: Add phrases like βproduct launchβ, βprojectβ, etc. to misc
lower_text = text.lower()
if "product launch" in lower_text:
entities["misc"].append("product launch")
if "birthday" in lower_text:
entities["misc"].append("birthday")
if "project" in lower_text:
entities["misc"].append("project")
# β
Add keyword-based places
for place in PLACE_KEYWORDS:
if place in lower_text and place not in entities["places"]:
entities["places"].append(place)
# β
Detect relation keywords (English + Hindi)
for relation in RELATION_KEYWORDS:
if re.search(rf"\b{re.escape(relation)}\b", text.lower()):
entities["people"].append(relation)
# β
Deduplicate and return
return {k: list(set(v)) for k, v in entities.items()}
# Function to calculate urgency score based on parsed dates
def get_urgency_score(text, parsed_dates):
urgency_keywords = ["urgent", "asap", "immediate", "must", "need to", "important", "donβt forget", "right away"]
text_lower = text.lower()
score = 0.0
# 1. Keyword-based boost
if any(word in text_lower for word in urgency_keywords):
score = 0.7
# 2. Time-based boost
now = datetime.now()
for d in parsed_dates:
dt = dateparser.parse(d)
if dt:
hours = (dt - now).total_seconds() / 3600
if 0 <= hours <= 24:
score = max(score, 1.0)
elif 24 < hours <= 72:
score = max(score, 0.8)
elif 72 < hours <= 168:
score = max(score, 0.5)
return round(score, 2)
# Function to get meta information about the text
def get_meta_info(text: str):
now = datetime.now()
return {
"word_count": len(text.strip().split()),
"day_of_week": now.strftime('%A'), # e.g., "Thursday"
"hour_of_day": now.hour,
"month": now.strftime('%B'), # e.g., "July"
"year": now.year # 0 to 23
}
def is_year_context(text_snippet):
return bool(re.search(r"\b(?:jan|feb|march|april|may|june|july|aug|sept|oct|nov|dec|year|in|on|by|for)\b", text_snippet))
# Function to extract amounts in various currencies from text
def extract_amounts(text: str):
currency_patterns = [
# INR variants
(re.compile(r"(?:βΉ|rs\.?|inr)\s?(\d[\d,]*(?:\.\d+)?)"), "INR"),
(re.compile(r"(\d[\d,]*(?:\.\d+)?)\s?(?:βΉ|rs\.?|inr)"), "INR"),
(re.compile(r"(\d+(?:\.\d+)?)\s?(rupees?|rupaye|rupiye)"), "INR"),
# USD variants
(re.compile(r"(?:\$)\s?(\d[\d,]*(?:\.\d+)?)"), "USD"),
(re.compile(r"(\d[\d,]*(?:\.\d+)?)\s?\$"), "USD"),
(re.compile(r"(\d+(?:\.\d+)?)\s?(dollars?)"), "USD"),
(re.compile(r"(\d+(?:\.\d+)?)\s?(cents?)"), "USD"),
# EUR variants
(re.compile(r"(?:β¬|eur)\s?(\d[\d,]*(?:\.\d+)?)"), "EUR"),
(re.compile(r"(\d[\d,]*(?:\.\d+)?)\s?β¬"), "EUR"),
(re.compile(r"(\d+(?:\.\d+)?)\s?(euros?)"), "EUR"),
# GBP variants
(re.compile(r"(?:Β£|gbp)\s?(\d[\d,]*(?:\.\d+)?)"), "GBP"),
(re.compile(r"(\d[\d,]*(?:\.\d+)?)\s?Β£"), "GBP"),
(re.compile(r"(\d+(?:\.\d+)?)\s?(pounds?)"), "GBP"),
# INR large units
(re.compile(r"(\d+(?:\.\d+)?)\s?(lacs?|lakhs?)"), "INR"),
(re.compile(r"(\d+(?:\.\d+)?)\s?(crores?|crs?|cr)"), "INR"),
]
results = []
seen = set()
text_lower = text.lower()
for pattern, currency_code in currency_patterns:
for match in pattern.finditer(text_lower):
groups = match.groups()
raw_number = next((g for g in groups if re.match(r"\d", g)), None)
if not raw_number:
continue
# Ignore phone numbers and IDs (10+ digits)
if len(raw_number.replace(",", "")) >= 10:
continue
try:
number = float(raw_number.replace(",", ""))
# Check for lakh/crore/cents multipliers
if any(g in ['lakh', 'lacs', 'lakhs'] for g in groups):
number *= 100_000
elif any(g in ['crore', 'crores', 'cr', 'crs'] for g in groups):
number *= 10_000_000
elif any(g == 'cents' for g in groups):
number /= 100
except Exception:
continue
key = (number, currency_code)
if key not in seen:
seen.add(key)
results.append({
"value": round(number, 2),
"currency": currency_code
})
# Fallback matching for generic numeric phrases near expense keywords
if not results:
fallback_patterns = [
re.compile(
r"\b(?:paid|spent|buy|purchase|cost|price|add(?:ed)?|gift(?:ed)?|bill(?: of)?|recharge(?:d)?|charged|transfer(?:red)?)\b[^0-9]{0,10}(\d[\d,]*(?:\.\d+)?)"
),
re.compile(r"\b(\d[\d,]{2,8})\b\s?(?:rs|inr)?")
]
for fallback_pattern in fallback_patterns:
match = fallback_pattern.search(text_lower)
if match:
number_str = match.group(1).replace(",", "")
# Ignore phone numbers and IDs
if len(number_str) >= 10:
continue
try:
number = float(number_str)
# Context check for year-like numbers
if 2020 <= number <= 2100:
# Check 5-6 words before/after for year clue
span = match.span(1)
surrounding = text_lower[max(0, span[0]-30):span[1]+30]
if is_year_context(surrounding):
continue # Looks like a year
key = (number, "INR")
if key not in seen:
seen.add(key)
results.append({
"value": round(number, 2),
"currency": "INR"
})
break # Only extract first match in fallback
except:
continue
return results
def predict_expense_category(text, detected_stores):
text_lower = text.lower()
# 1. Use detected store category if available
if detected_stores:
best_match = max(detected_stores, key=lambda s: s.get("confidence", 1.0))
return best_match["category"]
# Category keyword mapping
category_keywords = {
"food": [
"food", "lunch", "dinner", "breakfast", "snacks", "swiggy", "zomato", "dominos", "pizza", "kfc", "mcdonald",
"restaurant", "hotel", "cafe", "canteen", "meal", "buffet", "thali", "tiffin", "order", "takeaway", "parcel",
"eat", "eating", "brunch", "supper", "kitchen", "cook", "cooking", "chef", "dish", "dishes", "menu", "serve",
"served", "serving", "food court", "food delivery", "delivery", "online order", "food app", "food bill",
"beverage", "juice", "shake", "smoothie", "coffee", "tea", "chai", "cold drink", "soft drink", "soda", "water bottle",
"ice cream", "dessert", "sweet", "sweets", "chocolate", "candy", "bakery", "bread", "cake", "pastry", "cookie",
"biscuit", "chips", "fries", "burger", "sandwich", "roll", "wrap", "noodles", "pasta", "rice", "biryani", "curry",
"gravy", "dal", "sabzi", "roti", "naan", "paratha", "chapati", "idli", "dosa", "vada", "sambar", "chutney", "samosa",
"pakora", "chaat", "pani puri", "golgappa", "sev", "poha", "upma", "maggi", "maggie", "momos", "spring roll",
"manchurian", "paneer", "butter chicken", "tandoori", "kebab", "shawarma", "pizza hut", "subway", "starbucks",
# Hindi/Hinglish
"khana", "nashta", "bhojan", "rasoi", "thali", "dabba", "tiffin", "chai", "paani", "jal", "kharcha khana",
"khane ka bill", "khane ka paisa", "khane ki cheez", "khana order", "khana mangwaya", "khana khaya", "khana khud banaya",
"khana kharch", "khana kharida", "khana diya", "khana laya", "khana banaya"
],
"transport": [
"uber", "ola", "taxi", "cab", "bus", "train", "metro", "flight", "auto", "rickshaw", "car", "gaadi", "yatra", "safar", "travel", "ticket", "plane", "udaan", "station", "airport", "rapido",
],
"shopping": [
"amazon", "flipkart", "myntra", "shopping", "clothes", "kapde", "apparel", "shoes", "jeans", "tshirt", "store", "fashion", "dukaan", "mall", "bazaar", "market", "kharida", "order diya", "le liya"
],
"housing": [
"rent", "apartment", "house", "ghar", "flat", "maintenance", "landlord", "kiraya", "makaan", "room", "hostel", "pg", "society"
],
"utilities": [
"electricity", "power", "bijli", "water", "pani", "gas", "bill", "recharge", "broadband", "wifi", "airtel", "jio", "phone", "mobile", "internet", "light", "cylinder", "connection"
],
"entertainment": [
"movie", "netflix", "hotstar", "bookmyshow", "spotify", "gaming", "youtube premium", "cinema", "film", "picture", "game", "khel", "manoranjan", "show", "concert"
],
"health": [
"medicine", "hospital", "doctor", "clinic", "pharmacy", "tablet", "surgery", "checkup", "dawai", "aspatal", "ilaaj", "health", "bimari", "test", "medical", "pathology", "chemist"
],
"travel": [
"trip", "travel", "tour", "vacation", "hotel", "airbnb", "booking.com", "goibibo", "makemytrip", "yatra", "safar", "holiday", "journey", "musafir", "booking", "trip kiya"
],
"education": [
"course", "webinar", "class", "training", "workshop", "udemy", "coursera", "byjus", "unacademy", "skill", "padhai", "school", "college", "tuition", "kitab", "book", "fees", "shiksha"
],
"digital_services": [
"domain", "membership", "hosting", "license", "email", "software", "zoom", "notion", "figma", "aws", "google cloud", "saas", "subscription", "digital", "online", "app", "service", "renewal"
],
"gifts_donations": [
"gift", "donation", "present", "charity", "ngo", "temple", "mandir", "birthday gift", "festival gift", "uphaar", "daan", "tohfa", "chanda", "puja", "mandir", "gurudwara"
],
"finance": [
"insurance", "sip", "mutual fund", "stock", "demat", "zerodha", "investment", "trading", "upstox", "crypto", "policy", "premium", "loan", "emi", "fd", "rd", "paisa", "bank", "account"
],
"family_kids": [
"kid", "baby", "school", "daycare", "tuition", "books", "uniform", "toys", "creche", "baccha", "bachche", "parivar", "family", "beti", "beta", "child", "children"
],
"stationery": [
"pen", "pencil", "notebook", "diary", "eraser", "sharpener", "paper", "stationery", "register", "files", "file", "markers", "highlighter", "sticky notes", "geometry box",
"stapler", "ink", "printer paper", "stationary shop", "stationary", "copy", "kagaz", "likhne ka saman"
]
}
# 2. Match using keyword scores
matched = {cat: sum(1 for kw in kws if kw in text_lower) for cat, kws in category_keywords.items()}
best_match = max(matched.items(), key=lambda x: x[1])
if best_match[1] > 0:
return best_match[0]
return "miscellaneous"
def insert_text_entry(data):
try:
conn = psycopg2.connect(DATABASE_URL)
cur = conn.cursor()
insert_query = """
INSERT INTO user_entries (
uuid, user_id, raw_text, word_count, day_of_week, hour_of_day, month, year,
type, expense_type, intent, confidence_scores, urgency_score,
time_mentions, parsed_dates, tense, summary,
people, mood, language, sentiment_score, tags,
action_required, entities, amounts, stores, processing_time_ms, raw_json
) VALUES (
%(uuid)s, %(user_id)s, %(raw_text)s, %(word_count)s, %(day_of_week)s, %(hour_of_day)s, %(month)s, %(year)s,
%(type)s, %(expense_type)s, %(intent)s, %(confidence_scores)s, %(urgency_score)s,
%(time_mentions)s, %(parsed_dates)s, %(tense)s, %(summary)s,
%(people)s, %(mood)s, %(language)s, %(sentiment_score)s, %(tags)s,
%(action_required)s, %(entities)s, %(amounts)s, %(stores)s, %(processing_time_ms)s, %(raw_json)s
)
ON CONFLICT (uuid) DO NOTHING;
"""
cur.execute(insert_query, {
**data,
"confidence_scores": Json(data["confidence_scores"]),
"language": Json(data["language"]),
"stores": Json(data["stores"]),
"entities": Json(data["entities"]),
"amounts": Json(data["amounts"]),
"raw_json": Json(data["raw_json"])
})
conn.commit()
cur.close()
conn.close()
print("β
Data inserted successfully")
except Exception as e:
print("β Failed to insert data:", e)
@app.get("/health")
def health_check():
return {"message": "β
Hello from yourpartner/demospace β API is running!"}
@app.exception_handler(404)
async def not_found_handler(request: Request, exc):
return ORJSONResponse(status_code=404, content={"error": "Route not found"})
@app.exception_handler(500)
async def internal_error_handler(request: Request, exc):
return ORJSONResponse(status_code=500, content={"error": "Internal server error: " + str(exc)})
# Search endpoint to filter user entries based on various criteria
@app.get("/search", response_class=ORJSONResponse)
async def search_entries(
userid: str = Header(..., description="User ID"),
tags: str = "",
query: str = "",
startDate: str = "",
endDate: str = "",
type: str = ""
):
# Validate user_id from header
if not userid or not userid.strip():
return ORJSONResponse(status_code=400, content={"error": "Missing or empty userid header."})
# Build SQL filters
filters = ["user_id = %s"]
params = [userid]
if type:
filters.append("type = %s")
params.append(type)
if tags:
tag_list = [t.strip() for t in tags.split(",") if t.strip()]
filters.append("tags && %s")
params.append(tag_list)
if query:
filters.append("(raw_text ILIKE %s OR summary ILIKE %s)")
params.extend([f"%{query}%", f"%{query}%"])
if startDate:
try:
start_dt = datetime.strptime(startDate, "%d-%m-%Y")
filters.append("created_at >= %s")
params.append(start_dt)
except:
return ORJSONResponse(status_code=400, content={"error": "Invalid startDate format. Use DD-MM-YYYY."})
if endDate:
try:
end_dt = datetime.strptime(endDate, "%d-%m-%Y")
filters.append("created_at <= %s")
params.append(end_dt)
except:
return ORJSONResponse(status_code=400, content={"error": "Invalid endDate format. Use DD-MM-YYYY."})
where_clause = " AND ".join(filters)
query_sql = f"SELECT * FROM user_entries WHERE {where_clause} ORDER BY created_at DESC LIMIT 50"
try:
conn = psycopg2.connect(DATABASE_URL)
cur = conn.cursor()
cur.execute(query_sql, tuple(params))
rows = cur.fetchall()
columns = [desc[0] for desc in cur.description]
entries = [dict(zip(columns, row)) for row in rows]
# Remove raw_json from each entry in results
for entry in entries:
entry.pop("raw_json", None)
cur.close()
conn.close()
except Exception as e:
return ORJSONResponse(status_code=500, content={"error": str(e)})
return ORJSONResponse(content={"results": entries})
@app.get("/visualyse/{user_id}", response_class=ORJSONResponse)
async def visualyse_dashboard(user_id: str):
try:
conn = psycopg2.connect(DATABASE_URL)
cur = conn.cursor()
# Fetch all entries for the user
cur.execute("SELECT * FROM user_entries WHERE user_id = %s", (user_id,))
rows = cur.fetchall()
columns = [desc[0] for desc in cur.description]
entries = [dict(zip(columns, row)) for row in rows]
cur.close()
conn.close()
except Exception as e:
return ORJSONResponse(status_code=500, content={"error": str(e)})
# Section 1: Expense Overview
expenses = [e for e in entries if e["type"] == "expense"]
total_expense = sum(a["value"] for e in expenses for a in (e["amounts"] or []))
expense_count = len(expenses)
expense_by_category = {}
for e in expenses:
cat = e.get("expense_type", "miscellaneous")
amt = sum(a["value"] for a in (e["amounts"] or []))
expense_by_category[cat] = expense_by_category.get(cat, 0) + amt
# Monthly/Weekly Trends
monthly_trends = {}
for e in expenses:
key = f"{e['month']}-{e['year']}"
amt = sum(a["value"] for a in (e["amounts"] or []))
monthly_trends[key] = monthly_trends.get(key, 0) + amt
# Section 2: Top Stores & Categories
store_stats = {}
for e in expenses:
for s in (e["stores"] or []):
store = s.get("store", "unknown")
amt = sum(a["value"] for a in (e["amounts"] or []))
if store not in store_stats:
store_stats[store] = {"count": 0, "total": 0}
store_stats[store]["count"] += 1
store_stats[store]["total"] += amt
top_categories = sorted(expense_by_category.items(), key=lambda x: x[1], reverse=True)
# Section 3: Recent Expenses
recent_expenses = sorted(expenses, key=lambda e: e.get("created_at", ""), reverse=True)[:7]
# Section 4: Mood Trends
mood_dist = {}
for e in entries:
mood = e.get("mood", "neutral")
mood_dist[mood] = mood_dist.get(mood, 0) + 1
# Section 5: Tags & Keywords
tag_freq = {}
for e in entries:
for tag in (e["tags"] or []):
tag_freq[tag] = tag_freq.get(tag, 0) + 1
top_tags = sorted(tag_freq.items(), key=lambda x: x[1], reverse=True)[:15]
# Section 6: Time Analysis
day_stats = {}
hour_stats = {}
for e in expenses:
day = e.get("day_of_week", "unknown")
hour = e.get("hour_of_day", 0)
amt = sum(a["value"] for a in (e["amounts"] or []))
day_stats[day] = day_stats.get(day, 0) + amt
hour_stats[hour] = hour_stats.get(hour, 0) + amt
# Section 7: Meta Info
entry_count = len(entries)
type_dist = {}
for e in entries:
t = e.get("type", "other")
type_dist[t] = type_dist.get(t, 0) + 1
dashboard = {
"expense_overview": {
"total_expense": total_expense,
"expense_count": expense_count,
"expense_by_category": expense_by_category,
"monthly_trends": monthly_trends
},
"top_stores": store_stats,
"top_categories": top_categories,
"recent_expenses": recent_expenses,
"mood_distribution": mood_dist,
"top_tags": top_tags,
"time_analysis": {
"by_day": day_stats,
"by_hour": hour_stats
},
"meta_info": {
"entry_count": entry_count,
"type_distribution": type_dist
}
}
return ORJSONResponse(content=dashboard)
@app.post("/analyze", response_class=ORJSONResponse)
async def analyze(input: TextInput):
start_time = time.time() # β±οΈ start
text = input.text
label_map = {
"task (something to be done or completed)": "task",
"event (an activity that is happening or has happened)": "event",
"reminder (a message to remember something in the future)": "reminder",
"meeting (a planned gathering between people to discuss something)": "meeting",
"relationship (message about personal or emotional connection with someone)": "relationship",
"note (general note or quick thought not related to any specific category)": "note",
"journal (personal reflection or emotional writing about one's day or thoughts)": "journal",
"memory (recollection or recording of a past moment or experience)": "memory",
"status_update (current condition, feeling, or situation being shared)": "status_update",
"sick_notice (informing about illness or not feeling well)": "sick_notice",
"out_of_office (message about being unavailable for work or responsibilities)": "out_of_office",
"travel_plan (planning or mentioning a trip or journey)": "travel_plan",
"celebration (message about a festive occasion, party or achievement)": "celebration",
"expense (money spent on something, either small or large)": "expense",
"news (update about public events, announcements, or current affairs)": "news",
"information (factual content or informative message not tied to user activity)": "information",
"purchase (buying or ordering something, like a product or service)": "purchase",
"other (does not clearly fall into any specific category)": "other"
}
# classification = classifier(text, labels)
# Async call to classifier
classification = await asyncio.to_thread(classifier, text, labels, hypothesis_template="This entry is about {}.")
best_label = classification['labels'][0]
best_label = label_map.get(best_label, best_label)
amounts = await asyncio.to_thread(extract_amounts, text)
# Check if the best label is expense or purchase based on keywords
if (
best_label == "task"
and (any(word in text.lower() for word in expense_keywords) or amounts)
):
best_label = "expense"
if best_label == "purchase":
best_label = "expense"
if "reported" in text or "announced" in text or "collapsed" in text:
if best_label in ["task", "reminder", "event"]:
best_label = "news"
scores = dict(zip(classification['labels'], classification['scores']))
# # Convert to short labels
confidence_scores_full = {
label_map.get(label, label): score
for label, score in scores.items()
}
# Only keep top 2
confidence_scores = dict(sorted(confidence_scores_full.items(), key=lambda x: x[1], reverse=True)[:2])
parsed_dates, time_mentions = await asyncio.to_thread(extract_dates_with_accuracy, text, amounts)
tenses = detect_tense(parsed_dates)
summary = await asyncio.to_thread(generate_summary, text)
mood = estimate_mood(text)
tags = generate_tags(best_label, text)
language_detected = detect_language(text)
sentiment_score = get_sentiment_score(text)
if sentiment_score is None or sentiment_score == "":
sentiment_score = 0.0
entities = await asyncio.to_thread(extract_entities, text)
people = entities["people"] # Extracted people entities
intent = infer_intent(best_label, text)
urgency_score = get_urgency_score(text, parsed_dates)
detected_stores = detect_store_category(text)
expense_category = ""
if best_label == "expense" or best_label == "purchase":
expense_category = predict_expense_category(text, detected_stores)
# Define action triggers
ACTION_TRIGGERS = ["plan", "organize", "schedule", "remember", "book", "call", "follow up", "need to"]
action_required = False
if any(word in text.lower() for word in ACTION_TRIGGERS): action_required = True
action_required = urgency_score >= 0.6 or action_required
meta = get_meta_info(text)
end_time = time.time() # β±οΈ end
processing_time_ms = round((end_time - start_time) * 1000)
result = {
"uuid": str(uuid.uuid4()), # Unique identifier for the request
"user_id": input.user_id, # Unique identifier for the request
"raw_text": text,
"word_count": meta["word_count"],
"day_of_week": meta["day_of_week"],
"hour_of_day": meta["hour_of_day"],
"month": meta["month"],
"year": meta["year"],
"type": best_label,
"expense_type": expense_category,
"intent": intent,
"confidence_scores": confidence_scores,
"urgency_score": urgency_score,
"time_mentions": time_mentions,
"parsed_dates": parsed_dates,
"tense": tenses,
"summary": summary.removeprefix("summary:").strip(),
"people": people,
"mood": mood,
"language": language_detected,
"sentiment_score": sentiment_score,
"tags": tags,
"action_required": action_required,
"entities": entities,
"amounts": amounts,
"stores": detected_stores,
"processing_time_ms": processing_time_ms
}
# Store a copy of result without raw_json to avoid circular reference
raw_json_copy = result.copy()
# Remove raw_json if present (shouldn't be, but for safety)
raw_json_copy.pop("raw_json", None)
result["raw_json"] = raw_json_copy
# Insert into database
await asyncio.to_thread(insert_text_entry, result)
# Log the result
print("β
Analysis complete")
# Remove raw_json from response
result.pop("raw_json", None)
# Return the result as JSON response
return ORJSONResponse(content=result) |