Spaces:
Sleeping
Sleeping
File size: 1,470 Bytes
b9a8411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 |
from transformers import AutoTokenizer,AutoFeatureExtractor
from datasets import load_dataset, Audio
# tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
# dataset = load_dataset("rotten_tomatoes", split="train")
# print(tokenizer(dataset[0]["text"]))
# def tokenization(example):
# return tokenizer(example["text"])
# dataset = dataset.map(tokenization, batched=True)
# feature_extractor = AutoFeatureExtractor.from_pretrained("facebook/wav2vec2-base-960h")
# dataset = load_dataset("PolyAI/minds14", "en-US", split="train")
# print(dataset[0]["audio"])
# dataset = dataset.cast_column("audio", Audio(sampling_rate=16_000))
# print(dataset[0]["audio"])
# def preprocess_function(examples):
# audio_arrays = [x["array"] for x in examples["audio"]]
# inputs = feature_extractor(
# audio_arrays, sampling_rate=feature_extractor.sampling_rate, max_length=16000, truncation=True
# )
# return inputs
# dataset = dataset.map(preprocess_function, batched=True)
feature_extractor = AutoFeatureExtractor.from_pretrained("google/vit-base-patch16-224-in21k")
dataset = load_dataset("beans", split="train")
print(dataset[0]["image"])
from torchvision.transforms import RandomRotation
rotate = RandomRotation(degrees=(0, 90))
def transforms(examples):
examples["pixel_values"] = [rotate(image.convert("RGB")) for image in examples["image"]]
return examples
dataset.set_transform(transforms)
print(dataset[0]["pixel_values"]) |