Spaces:
Sleeping
Sleeping
File size: 10,560 Bytes
2588b54 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 |
import concurrent.futures
import requests
from pdf2image import convert_from_path
import base64
from pymongo import MongoClient
from langchain_google_genai import ChatGoogleGenerativeAI
from langchain_google_genai import GoogleGenerativeAIEmbeddings
from langchain_core.messages import HumanMessage
import os
import re
import json
import uuid
from dotenv import load_dotenv
import pinecone
load_dotenv()
MONGO_URI = os.getenv("MONGO_URI")
DB_NAME = os.getenv("DB_NAME")
COLLECTION_NAME = os.getenv("COLLECTION_NAME")
FLASH_API = os.getenv("FLASH_API")
mongo_client = MongoClient(MONGO_URI)
db = mongo_client[DB_NAME]
collection = db[COLLECTION_NAME]
collection2=db['about_company']
model = ChatGoogleGenerativeAI(model="gemini-1.5-flash", temperature=0, max_tokens=None, google_api_key=FLASH_API)
google_embeddings = GoogleGenerativeAIEmbeddings(
model="models/embedding-001", # Correct model name
google_api_key="AIzaSyANNRKfEb-YnVIBaSAq6hQ38XpxxGwvaws" # Your API key
)
pc = pinecone.Pinecone(
api_key="4a80f293-ae6d-489a-a7d8-33ea3fcdd26b" # Your Pinecone API key
)
index_name = "mospi"
index = pc.Index(index_name)
about_company_doc=collection2.find_one({"type":"about_company"})
if about_company_doc:
about_company=about_company_doc.get('company_description','')
pdf_temp_dir = 'temp/pdf_files'
image_temp_dir = 'temp/page_images'
os.makedirs(pdf_temp_dir, exist_ok=True)
os.makedirs(image_temp_dir, exist_ok=True)
pdf_path = os.path.join(pdf_temp_dir, 'downloaded_file.pdf')
def download_and_split_pdf_to_image(url):
try:
response = requests.get(url)
with open(pdf_path, 'wb') as pdf_file:
pdf_file.write(response.content)
except Exception as e:
print(f"error occured during downloading pdf from object url : {e}")
return None
try:
images = convert_from_path(pdf_path)
for i, image in enumerate(images):
image_path = os.path.join(image_temp_dir, f'page_{i + 1}.png')
image.save(image_path, 'PNG')
print(f'Saved image: {image_path}')
return True
except Exception as e:
print(f"error occured in converting pdf pages to image : {e}")
return None
system_prompt_text = f"""Given is an image of a PDF page.Your task is to extract all the information from this image and give a detailed summary of the page, do not miss out on any information, include keywords or any terms mentioned in the pdf.'
Given below is a company information whose pdf page is givn to you, to understand the context.
- About Company: {about_company}
Follow this Expected output format given below:
Expected Output format : {{"description":"String"}}
"""
def process_image_using_llm(image, page_number, url):
try:
message = HumanMessage(
content=[
{"type": "text", "text": system_prompt_text},
{"type": "image_url", "image_url": {"url": f"data:image/jpeg;base64,{image}"}},
],
)
response = model.invoke([message])
print(f"LLM response for page {page_number}: {response}")
# Extract JSON from the response content using regex
match = re.search(r"\{.*\}", response.content.strip())
if match:
json_data = match.group(0)
# Step 1: Locate the "description" field and escape all single quotes within it
description_match = re.search(r"'description'\s*:\s*('.*?'|\".*?\")", json_data)
if description_match:
description_text = description_match.group(1)
# Replace outer single quotes with double quotes if necessary
if description_text.startswith("'") and description_text.endswith("'"):
description_text = f'"{description_text[1:-1]}"'
elif description_text.startswith('"') and description_text.endswith('"'):
pass # No change needed if already double quotes
# Escape all single quotes within the description text
description_text = description_text.replace("'", "\\'")
# Replace the original match with the updated description text
json_data = (
json_data[:description_match.start(1)] +
description_text +
json_data[description_match.end(1):]
)
# Step 2: Attempt to load the cleaned JSON string
try:
data = json.loads(json_data) # Load as JSON
description = data.get("description", "None").strip()
can_find_description = description != "None"
return {
"page_number": page_number,
"description": description if can_find_description else None,
"can_find_description": can_find_description
}
except json.JSONDecodeError as e:
print(f"Error decoding JSON for page {page_number}: {e}")
return {
"page_number": page_number,
"description": None,
"can_find_description": False
}
else:
print(f"No valid JSON found in the response for page {page_number}")
return {
"page_number": page_number,
"description": None,
"can_find_description": False
}
except Exception as e:
print(f"Error processing page {page_number}: {e}")
return {
"page_number": page_number,
"description": None,
"can_find_description": False
}
def create_embedding_for_pdf_chunks(page,description,url,tags,categories):
try:
document = collection.find_one({'object_url': url})
file_type = document.get("type")
mongo_id = str(document.get('_id'))
embedding = google_embeddings.embed_query(description)
pinecone_id = str(uuid.uuid4())
vectors = [{
'id': pinecone_id,
'values': embedding,
'metadata': {
'description': description,
"url": url,
"page_number":page,
"tag": file_type,
"mongo_id": mongo_id,
"tags": ','.join(tags),
"categories": ','.join(categories) # Store MongoDB ID in metadata
}
}]
index.upsert(vectors)
print(f"Inserted: page {page} in Pinecone with MongoDB ID {mongo_id} in metadata")
collection.update_one(
{
"_id": document["_id"],
"chunks.page_number": page # Match document and specific chunk by page number
},
{
"$set": {
"chunks.$.pinecone_id": pinecone_id,
"chunks.$.successfully_embedding_created": True
}
}
)
return True
except Exception as e:
print(f"error occured in creating embedding for pdf with mongo id {mongo_id} for page {page}")
collection.update_one(
{
"_id": document["_id"],
"chunks.page_number": page # Match document and specific chunk by page number
},
{
"$set": {
"chunks.$.successfully_embedding_created": False
}
}
)
return False
def process_image_and_create_embedding(page_number, image_path, url, tags, categories):
with open(image_path, "rb") as image_file:
image_data = base64.b64encode(image_file.read()).decode("utf-8")
# Process image using LLM to get description
page_result = process_image_using_llm(image_data, page_number, url)
# If description is available, create embedding
if page_result.get("description"):
create_embedding_for_pdf_chunks(page_number, page_result["description"], url, tags, categories)
else:
print(f"Skipping page {page_number} as description is None")
return page_result
def cleanup_directory(directory_path):
try:
for filename in os.listdir(directory_path):
file_path = os.path.join(directory_path, filename)
if os.path.isfile(file_path):
os.remove(file_path)
print(f"Cleaned up files in {directory_path}")
except Exception as e:
print(f"Error cleaning up directory {directory_path}: {e}")
def process_pdf(url, tags, categories):
print(f"Processing PDF with URL: {url}")
if download_and_split_pdf_to_image(url):
chunks = []
image_files = sorted(
os.listdir(image_temp_dir),
key=lambda x: int(re.search(r'page_(\d+)', x).group(1))
)
# Use ThreadPoolExecutor to process each page in parallel
with concurrent.futures.ThreadPoolExecutor() as executor:
futures = [
executor.submit(
process_image_and_create_embedding,
count,
os.path.join(image_temp_dir, image_name),
url,
tags,
categories
)
for count, image_name in enumerate(image_files, start=1)
]
# Collect results as each thread completes
for future in concurrent.futures.as_completed(futures):
try:
page_result = future.result()
chunks.append(page_result)
except Exception as e:
print(f"Error processing page: {e}")
# Update MongoDB document with the collected chunks
collection.update_one(
{"object_url": url},
{"$set": {"chunks": chunks}},
upsert=True
)
print("Saved chunks to MongoDB.")
# Cleanup directories
cleanup_directory(pdf_temp_dir)
cleanup_directory(image_temp_dir)
# Check how many pages failed to create embeddings
total_pages = len(chunks)
failed_pages = sum(1 for chunk in chunks if not chunk.get("can_find_description"))
return failed_pages < total_pages
|