File size: 30,418 Bytes
b9ab29b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "#birleştirilcek dosyaların listesi \n",
    "train_files=['C:\\\\gitProjects\\\\oak\\\\data\\\\train-00000-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00001-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00002-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00003-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00004-of-00007.parquet']\n",
    "test_files=['C:\\\\gitProjects\\\\oak\\\\data\\\\train-00005-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00006-of-00007.parquet']\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "ename": "ImportError",
     "evalue": "cannot import name 'Automodel' from 'transformers' (c:\\gitProjects\\deneme\\.venv\\Lib\\site-packages\\transformers\\__init__.py)",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mImportError\u001b[0m                               Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[11], line 4\u001b[0m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m  \u001b[38;5;21;01mtransformers\u001b[39;00m\n\u001b[0;32m      3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Dataset\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Automodel \n",
      "\u001b[1;31mImportError\u001b[0m: cannot import name 'Automodel' from 'transformers' (c:\\gitProjects\\deneme\\.venv\\Lib\\site-packages\\transformers\\__init__.py)"
     ]
    }
   ],
   "source": [
    "import datasets\n",
    "import  transformers\n",
    "from datasets import Dataset\n",
    "from transformers import Automodel "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 7,
   "metadata": {},
   "outputs": [
    {
     "name": "stdout",
     "output_type": "stream",
     "text": [
      "Package           Version\n",
      "----------------- -----------\n",
      "asttokens         2.4.1\n",
      "colorama          0.4.6\n",
      "comm              0.2.2\n",
      "debugpy           1.8.2\n",
      "decorator         5.1.1\n",
      "executing         2.0.1\n",
      "ipykernel         6.29.5\n",
      "ipython           8.26.0\n",
      "jedi              0.19.1\n",
      "jupyter_client    8.6.2\n",
      "jupyter_core      5.7.2\n",
      "matplotlib-inline 0.1.7\n",
      "nest-asyncio      1.6.0\n",
      "packaging         24.1\n",
      "parso             0.8.4\n",
      "pip               24.2\n",
      "platformdirs      4.2.2\n",
      "prompt_toolkit    3.0.47\n",
      "psutil            6.0.0\n",
      "pure_eval         0.2.3\n",
      "Pygments          2.18.0\n",
      "python-dateutil   2.9.0.post0\n",
      "pywin32           306\n",
      "pyzmq             26.0.3\n",
      "setuptools        65.5.0\n",
      "six               1.16.0\n",
      "stack-data        0.6.3\n",
      "tornado           6.4.1\n",
      "traitlets         5.14.3\n",
      "typing_extensions 4.12.2\n",
      "wcwidth           0.2.13\n",
      "Collecting transformers\n",
      "  Downloading transformers-4.43.3-py3-none-any.whl.metadata (43 kB)\n",
      "Collecting filelock (from transformers)\n",
      "  Using cached filelock-3.15.4-py3-none-any.whl.metadata (2.9 kB)\n",
      "Collecting huggingface-hub<1.0,>=0.23.2 (from transformers)\n",
      "  Using cached huggingface_hub-0.24.5-py3-none-any.whl.metadata (13 kB)\n",
      "Collecting numpy>=1.17 (from transformers)\n",
      "  Using cached numpy-2.0.1-cp311-cp311-win_amd64.whl.metadata (60 kB)\n",
      "Requirement already satisfied: packaging>=20.0 in c:\\gitprojects\\deneme\\.venv\\lib\\site-packages (from transformers) (24.1)\n",
      "Collecting pyyaml>=5.1 (from transformers)\n",
      "  Using cached PyYAML-6.0.1-cp311-cp311-win_amd64.whl.metadata (2.1 kB)\n",
      "Collecting regex!=2019.12.17 (from transformers)\n",
      "  Downloading regex-2024.7.24-cp311-cp311-win_amd64.whl.metadata (41 kB)\n",
      "Collecting requests (from transformers)\n",
      "  Using cached requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\n",
      "Collecting safetensors>=0.4.1 (from transformers)\n",
      "  Downloading safetensors-0.4.3-cp311-none-win_amd64.whl.metadata (3.9 kB)\n",
      "Collecting tokenizers<0.20,>=0.19 (from transformers)\n",
      "  Downloading tokenizers-0.19.1-cp311-none-win_amd64.whl.metadata (6.9 kB)\n",
      "Collecting tqdm>=4.27 (from transformers)\n",
      "  Using cached tqdm-4.66.4-py3-none-any.whl.metadata (57 kB)\n",
      "Collecting fsspec>=2023.5.0 (from huggingface-hub<1.0,>=0.23.2->transformers)\n",
      "  Using cached fsspec-2024.6.1-py3-none-any.whl.metadata (11 kB)\n",
      "Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\gitprojects\\deneme\\.venv\\lib\\site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\n",
      "Requirement already satisfied: colorama in c:\\gitprojects\\deneme\\.venv\\lib\\site-packages (from tqdm>=4.27->transformers) (0.4.6)\n",
      "Collecting charset-normalizer<4,>=2 (from requests->transformers)\n",
      "  Using cached charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl.metadata (34 kB)\n",
      "Collecting idna<4,>=2.5 (from requests->transformers)\n",
      "  Using cached idna-3.7-py3-none-any.whl.metadata (9.9 kB)\n",
      "Collecting urllib3<3,>=1.21.1 (from requests->transformers)\n",
      "  Using cached urllib3-2.2.2-py3-none-any.whl.metadata (6.4 kB)\n",
      "Collecting certifi>=2017.4.17 (from requests->transformers)\n",
      "  Using cached certifi-2024.7.4-py3-none-any.whl.metadata (2.2 kB)\n",
      "Downloading transformers-4.43.3-py3-none-any.whl (9.4 MB)\n",
      "   ---------------------------------------- 0.0/9.4 MB ? eta -:--:--\n",
      "   ---------------------------------------- 0.0/9.4 MB ? eta -:--:--\n",
      "   - -------------------------------------- 0.3/9.4 MB ? eta -:--:--\n",
      "   -- ------------------------------------- 0.5/9.4 MB 932.9 kB/s eta 0:00:10\n",
      "   -- ------------------------------------- 0.5/9.4 MB 932.9 kB/s eta 0:00:10\n",
      "   --- ------------------------------------ 0.8/9.4 MB 838.9 kB/s eta 0:00:11\n",
      "   ---- ----------------------------------- 1.0/9.4 MB 825.2 kB/s eta 0:00:11\n",
      "   ---- ----------------------------------- 1.0/9.4 MB 825.2 kB/s eta 0:00:11\n",
      "   ----- ---------------------------------- 1.3/9.4 MB 818.6 kB/s eta 0:00:10\n",
      "   ------ --------------------------------- 1.6/9.4 MB 822.8 kB/s eta 0:00:10\n",
      "   ------ --------------------------------- 1.6/9.4 MB 822.8 kB/s eta 0:00:10\n",
      "   ------- -------------------------------- 1.8/9.4 MB 838.9 kB/s eta 0:00:10\n",
      "   -------- ------------------------------- 2.1/9.4 MB 851.1 kB/s eta 0:00:09\n",
      "   -------- ------------------------------- 2.1/9.4 MB 851.1 kB/s eta 0:00:09\n",
      "   ---------- ----------------------------- 2.4/9.4 MB 860.5 kB/s eta 0:00:09\n",
      "   ----------- ---------------------------- 2.6/9.4 MB 878.0 kB/s eta 0:00:08\n",
      "   ------------ --------------------------- 2.9/9.4 MB 897.4 kB/s eta 0:00:08\n",
      "   ------------- -------------------------- 3.1/9.4 MB 913.7 kB/s eta 0:00:07\n",
      "   -------------- ------------------------- 3.4/9.4 MB 911.0 kB/s eta 0:00:07\n",
      "   -------------- ------------------------- 3.4/9.4 MB 911.0 kB/s eta 0:00:07\n",
      "   --------------- ------------------------ 3.7/9.4 MB 908.8 kB/s eta 0:00:07\n",
      "   ---------------- ----------------------- 3.9/9.4 MB 910.4 kB/s eta 0:00:07\n",
      "   ----------------- ---------------------- 4.2/9.4 MB 918.5 kB/s eta 0:00:06\n",
      "   ----------------- ---------------------- 4.2/9.4 MB 918.5 kB/s eta 0:00:06\n",
      "   ------------------ --------------------- 4.5/9.4 MB 916.2 kB/s eta 0:00:06\n",
      "   -------------------- ------------------- 4.7/9.4 MB 926.1 kB/s eta 0:00:06\n",
      "   --------------------- ------------------ 5.0/9.4 MB 935.1 kB/s eta 0:00:05\n",
      "   ---------------------- ----------------- 5.2/9.4 MB 940.5 kB/s eta 0:00:05\n",
      "   ----------------------- ---------------- 5.5/9.4 MB 950.7 kB/s eta 0:00:05\n",
      "   ------------------------ --------------- 5.8/9.4 MB 957.4 kB/s eta 0:00:04\n",
      "   ------------------------- -------------- 6.0/9.4 MB 966.3 kB/s eta 0:00:04\n",
      "   -------------------------- ------------- 6.3/9.4 MB 974.5 kB/s eta 0:00:04\n",
      "   --------------------------- ------------ 6.6/9.4 MB 984.6 kB/s eta 0:00:03\n",
      "   ---------------------------- ----------- 6.8/9.4 MB 991.6 kB/s eta 0:00:03\n",
      "   ------------------------------ --------- 7.1/9.4 MB 1.0 MB/s eta 0:00:03\n",
      "   ------------------------------- -------- 7.3/9.4 MB 1.0 MB/s eta 0:00:03\n",
      "   -------------------------------- ------- 7.6/9.4 MB 1.0 MB/s eta 0:00:02\n",
      "   --------------------------------- ------ 7.9/9.4 MB 1.0 MB/s eta 0:00:02\n",
      "   ---------------------------------- ----- 8.1/9.4 MB 1.0 MB/s eta 0:00:02\n",
      "   ----------------------------------- ---- 8.4/9.4 MB 1.0 MB/s eta 0:00:01\n",
      "   ------------------------------------ --- 8.7/9.4 MB 1.1 MB/s eta 0:00:01\n",
      "   ------------------------------------- -- 8.9/9.4 MB 1.1 MB/s eta 0:00:01\n",
      "   ---------------------------------------- 9.4/9.4 MB 1.1 MB/s eta 0:00:00\n",
      "Using cached huggingface_hub-0.24.5-py3-none-any.whl (417 kB)\n",
      "Using cached numpy-2.0.1-cp311-cp311-win_amd64.whl (16.6 MB)\n",
      "Using cached PyYAML-6.0.1-cp311-cp311-win_amd64.whl (144 kB)\n",
      "Downloading regex-2024.7.24-cp311-cp311-win_amd64.whl (269 kB)\n",
      "Downloading safetensors-0.4.3-cp311-none-win_amd64.whl (287 kB)\n",
      "Downloading tokenizers-0.19.1-cp311-none-win_amd64.whl (2.2 MB)\n",
      "   ---------------------------------------- 0.0/2.2 MB ? eta -:--:--\n",
      "   ---------------------------------------- 0.0/2.2 MB ? eta -:--:--\n",
      "   --------- ------------------------------ 0.5/2.2 MB 1.4 MB/s eta 0:00:02\n",
      "   -------------- ------------------------- 0.8/2.2 MB 1.3 MB/s eta 0:00:02\n",
      "   ------------------ --------------------- 1.0/2.2 MB 1.3 MB/s eta 0:00:01\n",
      "   ----------------------- ---------------- 1.3/2.2 MB 1.4 MB/s eta 0:00:01\n",
      "   ---------------------------- ----------- 1.6/2.2 MB 1.4 MB/s eta 0:00:01\n",
      "   --------------------------------- ------ 1.8/2.2 MB 1.4 MB/s eta 0:00:01\n",
      "   ---------------------------------------- 2.2/2.2 MB 1.4 MB/s eta 0:00:00\n",
      "Using cached tqdm-4.66.4-py3-none-any.whl (78 kB)\n",
      "Using cached filelock-3.15.4-py3-none-any.whl (16 kB)\n",
      "Using cached requests-2.32.3-py3-none-any.whl (64 kB)\n",
      "Using cached certifi-2024.7.4-py3-none-any.whl (162 kB)\n",
      "Using cached charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl (99 kB)\n",
      "Using cached fsspec-2024.6.1-py3-none-any.whl (177 kB)\n",
      "Using cached idna-3.7-py3-none-any.whl (66 kB)\n",
      "Using cached urllib3-2.2.2-py3-none-any.whl (121 kB)\n",
      "Installing collected packages: urllib3, tqdm, safetensors, regex, pyyaml, numpy, idna, fsspec, filelock, charset-normalizer, certifi, requests, huggingface-hub, tokenizers, transformers\n",
      "Successfully installed certifi-2024.7.4 charset-normalizer-3.3.2 filelock-3.15.4 fsspec-2024.6.1 huggingface-hub-0.24.5 idna-3.7 numpy-2.0.1 pyyaml-6.0.1 regex-2024.7.24 requests-2.32.3 safetensors-0.4.3 tokenizers-0.19.1 tqdm-4.66.4 transformers-4.43.3 urllib3-2.2.2\n"
     ]
    }
   ],
   "source": [
    "!pip list dataset\n",
    "!pip install transformers"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#dosyaları yükleyin ve birleştirin\n",
    "train_dfs=[pd.read_parquet(file) for file in train_files]\n",
    "test_dfs=[pd.read_parquet(file) for file in test_files]"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#parque dosyalarının birleştirilmesi\n",
    "train_df=pd.concat(train_dfs,ignore_index=True)\n",
    "test_df=pd.concat(test_dfs,ignore_index=True)\n",
    "\n",
    "print(train_df.head())\n",
    "print(train_df.head())\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#train  ve test dosyaları oluşturma \n",
    "train_df.to_parquet('C:\\\\gitProjects\\\\train_Egitim\\\\merged_train.parquet')\n",
    "test_df.to_parquet('C:\\\\gitProjects\\\\test_Egitim\\\\merged_train.parquet')"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#test ve train yollarını belirleme ve test, traindeki önemli sütunları alma\n",
    "train_file_path=('C:\\\\gitProjects\\\\train_Egitim\\\\merged_train.parquet')\n",
    "test_file_path=('C:\\\\gitProjects\\\\test_Egitim\\\\merged_train.parquet')\n",
    "\n",
    "train_df=pd.read_parquet(train_file_path,columns=['Prompt_ID','Prompt','Response','Category','Subcategory','Prompt_token_length'])\n",
    "test_df=pd.read_parquet(test_file_path,columns=['Prompt_ID','Prompt','Response','Category','Subcategory','Prompt_token_length'])\n",
    "\n",
    "print(train_df.head())\n",
    "print(test_df.head())"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "#verileri bart ile eğitme burada koleksiyon içerisindeki veriler tanımlanmalı \n",
    "# Load model directly\n",
    "from transformers import AutoModel,AutoTokenizer\n",
    "from transformers import (WEIGHTS_NAME, BertConfig,\n",
    "                                  BertForQuestionAnswering, BertTokenizer)\n",
    "from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n",
    "\n",
    "#from utils import (get_answer, input_to_squad_example,squad_examples_to_features, to_list)\n",
    "import collections\n",
    "# Load model directly\n",
    "from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n",
    "\n",
    "tokenizer = AutoTokenizer.from_pretrained(\"philschmid/bart-large-cnn-samsum\")\n",
    "model = AutoModelForSeq2SeqLM.from_pretrained(\"philschmid/bart-large-cnn-samsum\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymongo import MongoClient\n",
    "import pandas as pd\n",
    "\n",
    "# MongoDB connection settings\n",
    "\n",
    "def get_mongodb(database_name='yeniDatabase', collection_name='train', host='localhost', port=27017):\n",
    "    \"\"\"\n",
    "    MongoDB connection and collection selection\n",
    "    \"\"\"\n",
    "    client = MongoClient(f'mongodb://{host}:{port}/')\n",
    "    db = client[database_name]\n",
    "    collection = db[collection_name]\n",
    "    return collection\n",
    "\n",
    "# Function to load dataset into MongoDB\n",
    "def dataset_read():\n",
    "    train_file_path = ('C:\\\\gitProjects\\\\train_Egitim\\\\merged_train.parquet')\n",
    "    data = pd.read_parquet(train_file_path, columns=['Prompt_ID', 'Prompt', 'Response', 'Category', 'Subcategory', 'Prompt_token_length'])\n",
    "    data_dict = data.to_dict(\"records\")\n",
    "\n",
    "    # Get the MongoDB collection\n",
    "    source_collection = get_mongodb(database_name='yeniDatabase', collection_name='train')  # Collection for translation\n",
    "\n",
    "    # Insert data into MongoDB\n",
    "    source_collection.insert_many(data_dict)\n",
    "\n",
    "    print(\"Data successfully loaded into MongoDB.\")\n",
    "    return source_collection\n",
    "\n",
    "# Call the function to load the dataset into MongoDB\n",
    "source_collection = dataset_read()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Test ve train verilerini mongodb ye yükleme"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "def get_mongodb(database_name='yeniDatabase', collection_name='test', mongo_url='mongodb://localhost:27017/'):\n",
    "    \"\"\"\n",
    "    MongoDB connection and collection selection\n",
    "    \"\"\"\n",
    "    client = MongoClient(mongo_url)\n",
    "    db = client[database_name]\n",
    "    collection = db[collection_name]\n",
    "    return collection\n",
    "\n",
    "# Function to load dataset into MongoDB\n",
    "def dataset_read():\n",
    "    train_file_path = ('C:\\\\gitProjects\\\\test_Egitim\\\\merged_train.parquet')\n",
    "    data = pd.read_parquet(train_file_path, columns=['Prompt_ID', 'Prompt', 'Response', 'Category', 'Subcategory', 'Prompt_token_length'])\n",
    "    data_dict = data.to_dict(\"records\")\n",
    "\n",
    "    # Get the MongoDB collection\n",
    "    source_collection = get_mongodb(database_name='yeniDatabase', collection_name='test')  # Collection for translation\n",
    "\n",
    "    # Insert data into MongoDB\n",
    "    source_collection.insert_many(data_dict)\n",
    "\n",
    "    print(\"Data successfully loaded into MongoDB.\")\n",
    "    return source_collection\n",
    "\n",
    "# Call the function to load the dataset into MongoDB\n",
    "source_collection = dataset_read()"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "Model eğitimi \n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "# uygulama için kullanılcak olan özelliklerin tanımlanması\n",
    "from transformers import BertTokenizer,BertForQuestionAnswering,BertConfig\n",
    "class QA:\n",
    "    def __init__(self,model_path: str):\n",
    "        self.max_seq_length = 384 #max seq\n",
    "        self.doc_stride = 128 #stride \n",
    "        self.do_lower_case = False\n",
    "        self.max_query_length = 30\n",
    "        self.n_best_size = 3\n",
    "        self.max_answer_length = 30\n",
    "        self.version_2_with_negative = False\n",
    "        #modelin yüklenmesi\n",
    "        self.model, self.tokenizer = self.load_model(model_path)\n",
    "        #hangi işlmecinin kullanıldığının belirlenmesi\n",
    "        if torch.cuda.is_available():\n",
    "            self.device = 'cuda'\n",
    "        else:\n",
    "            self.device = 'cpu'\n",
    "        self.model.to(self.device)\n",
    "        self.model.eval()\n",
    "        \n",
    "        # This function is used to load the model\n",
    "    def load_model(self,model_path: str,do_lower_case=False):\n",
    "        config = BertConfig.from_pretrained(model_path + \"C:\\\\gitProjects\\\\train_Egitim\")\n",
    "        tokenizer = BertTokenizer.from_pretrained(model_path, do_lower_case=do_lower_case)\n",
    "        model = BertForQuestionAnswering.from_pretrained(model_path, from_tf=False, config=config)\n",
    "        return model, tokenizer\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymongo import MongoClient\n",
    "\n",
    "def get_mongodb():\n",
    "    # MongoDB bağlantı bilgilerini döndürecek şekilde tanımlanmalıdır.\n",
    "    return 'mongodb://localhost:27017/', 'yeniDatabase', 'test'\n",
    "\n",
    "def get_average_prompt_token_length():\n",
    "    # MongoDB bağlantı bilgilerini alma\n",
    "    mongo_url, db_name, collection_name = get_mongodb()\n",
    "\n",
    "    # MongoDB'ye bağlanma\n",
    "    client = MongoClient(mongo_url)\n",
    "    db = client[db_name]\n",
    "    collection = db[collection_name]\n",
    "\n",
    "    # Tüm dökümanları çekme ve 'prompt_token_length' alanını alma\n",
    "    docs = collection.find({}, {'Prompt_token_length': 1})\n",
    "\n",
    "    # 'prompt_token_length' değerlerini toplama ve sayma\n",
    "    total_length = 0\n",
    "    count = 0\n",
    "\n",
    "    for doc in docs:\n",
    "        if 'Prompt_token_length' in doc:\n",
    "            total_length += doc['Prompt_token_length']\n",
    "            count += 1\n",
    "    \n",
    "    # Ortalama hesaplama\n",
    "    if count > 0:\n",
    "        average_length = total_length / count\n",
    "    else:\n",
    "        average_length = 0  # Eğer 'prompt_token_length' alanı olan döküman yoksa\n",
    "\n",
    "    return int(average_length)\n",
    "\n",
    "# Ortalama prompt token uzunluğunu al ve yazdır\n",
    "average_length = get_average_prompt_token_length()\n",
    "print(f\"Ortalama prompt token uzunluğu: {average_length}\")\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from pymongo import MongoClient\n",
    "from transformers import BertTokenizer\n",
    "\n",
    "#getmongodb oluştumak yerine içeriği değiştirilmeli \n",
    "def get_mongodb():\n",
    "    # MongoDB bağlantı bilgilerini döndürecek şekilde tanımlanmalıdır.\n",
    "    return 'mongodb://localhost:27017/', 'yeniDatabase', 'train'\n",
    "\n",
    "def get_input_texts():\n",
    "    # MongoDB bağlantı bilgilerini alma\n",
    "    mongo_url, db_name, collection_name = get_mongodb()\n",
    "\n",
    "    # MongoDB'ye bağlanma\n",
    "    client = MongoClient(mongo_url)\n",
    "    db = client[db_name]\n",
    "    collection = db[collection_name]\n",
    "    \n",
    "    #input texleri mongodb üzerinde 'Prompt' lara denk gelir.\n",
    "\n",
    "    # Sorguyu tanımlama\n",
    "    query = {\"Prompt\": {\"$exists\": True}}\n",
    "\n",
    "    # Sorguyu çalıştırma ve dökümanları çekme\n",
    "    cursor = collection.find(query, {\"Prompt\": 1, \"_id\": 0})  # 'input_text' alanını almak için \"_id\": 0 ekleyin\n",
    "\n",
    "    # Cursor'ı döküman listesine dönüştürme\n",
    "    input_texts_from_db = list(cursor)\n",
    "\n",
    "    # Input text'leri döndürme\n",
    "    return input_texts_from_db\n",
    "\n",
    "input_texts_from_db= get_input_texts()\n",
    "# Input text'leri al ve yazdır\n",
    "\n",
    "#tokenizer ı yükle\n",
    "tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')\n",
    "    \n",
    "#encode etmek için gerekli olan bilgiler \n",
    "input_texts=[doc[\"Prompt\"] for doc in input_texts_from_db ]\n",
    "\n",
    "#encoding işleminde inputlar \n",
    "\n",
    "# Tokenize the input texts\n",
    "encoded_inputs = tokenizer.batch_encode_plus(\n",
    "    input_texts,\n",
    "    padding=True,\n",
    "    truncation=True,\n",
    "    max_length=100,\n",
    "    return_attention_mask=True,\n",
    "    return_tensors='pt'\n",
    ")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "print(f\"encoded_inputs:{encoded_inputs}\")"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "#maskeleme yönetmiyle eğitim\n",
    "# Define the number of epochs and learning rate\n",
    "num_epochs = 3\n",
    "learning_rate = 1e-4\n",
    "optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n",
    "\n",
    "#Iterate over the epochs\n",
    "for epoch in range(num_epochs):\n",
    "    total_loss = 0\n",
    "    for input_ids, attention_mask, labels in encoded_inputs:\n",
    "        #reset gradients\n",
    "        optimizer.zero_grad()\n",
    "        #forward pass \n",
    "        outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)\n",
    "        loss = outputs.loss\n",
    "        #backward pass \n",
    "        loss.backward()\n",
    "        #update optimizer \n",
    "        optimizer.step()\n",
    "        #accumulate total loss\n",
    "        total_loss += loss.item()\n",
    "    #calculate average loss\n",
    "    average_loss = total_loss / len(encoded_inputs)\n",
    "    #print the loss for current epoch\n",
    "    print(f\"Epoch {epoch+1} - Loss: {average_loss:.4f}\")\n",
    "\n",
    "    #tüm bu verileri tutan bir \"batch_of_attention_masks\" verisini tanımlamam gerek"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from torch.utils.data import DataLoader,TensorDataset\n",
    "import torch\n",
    "from transformers import BertTokenizer\n",
    "\n",
    "#hdef değerlerle karşılaştırma yapabilmek için ve doğruluğu ölçmek için\n",
    "\n",
    "# Assuming you have tokenized input texts and labels\n",
    "#attetion mask bert dilinde modelin sadece gerçek tokenler üzerinde çalışmasını sağlar.\n",
    "input_ids = encoded_inputs['input_ids'] # Replace with your tokenized input texts\n",
    "attention_masks = encoded_inputs['attention_mask']\n",
    "\n",
    "\n",
    "labels = torch.tensor([1]*len(input_ids))\n",
    "\n",
    "# Create a TensorDataset\n",
    "dataset = TensorDataset(input_ids, attention_masks, labels)\n",
    "\n",
    "batch_size=10000\n",
    "# Create a data loader\n",
    "data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
    "\n",
    "for batch in data_loader:\n",
    "    input_ids,attention_masks,labels\n",
    "    print(f\"ınput ıds :{input_texts}\")\n",
    "    print(f\"attetion masks: {attention_masks}\")\n",
    "    print(f\"labels:{labels}\")\n",
    "    break"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    " # This function performs the prediction and return the reponse to the flask app\n",
    " # This function performs the prediction and return the reponse to the flask app\n",
    "RawResult = collection.namedtuple(\"RawResult\",[\"unique_id\", \"start_logits\", \"end_logits\"])\n",
    "\n",
    "def predict(self,passage :str,question :str):        \n",
    "        example = input_to_squad_example(passage,question)        \n",
    "        features = squad_examples_to_features(example,self.tokenizer,self.max_seq_length,self.doc_stride,self.max_query_length)        \n",
    "        all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n",
    "        all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)\n",
    "        all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)\n",
    "        all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)\n",
    "        dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,\n",
    "                                all_example_index)\n",
    "        eval_sampler = SequentialSampler(dataset)\n",
    "        eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=1)\n",
    "        \n",
    "        all_results = []\n",
    "        for batch in eval_dataloader:\n",
    "            batch = tuple(t.to(self.device) for t in batch)\n",
    "            with torch.no_grad():\n",
    "                inputs = {'input_ids':      batch[0],\n",
    "                        'attention_mask': batch[1],\n",
    "                        'token_type_ids': batch[2]  \n",
    "                        }                \n",
    "                example_indices = batch[3]             \n",
    "                outputs = self.model(**inputs)\n",
    "                \n",
    "            for i, example_index in enumerate(example_indices):\n",
    "                eval_feature = features[example_index.item()]\n",
    "                unique_id = int(eval_feature.unique_id)\n",
    "                result = RawResult(unique_id    = unique_id,\n",
    "                                    start_logits = to_list(outputs[0][i]),\n",
    "                                    end_logits   = to_list(outputs[1][i]))\n",
    "                all_results.append(result)\n",
    "            \n",
    "        answer = get_answer(example,features,all_results,self.n_best_size,self.max_answer_length,self.do_lower_case)\n",
    "        \n",
    "        return answer"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "tokenizer.batch_encode_plus()\n",
    "torch.utils.data.DataLoader\n",
    "input_ids = torch.tensor(batch_of_tokenized_input_texts)\n",
    "attention_mask = torch.tensor(batch_of_attention_masks)\n",
    "labels = torch.tensor(batch_of_labels)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "model.save_pretrained(output_model_path)\n",
    "tokenizer.save_pretrained(output_model_path)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from app import train_model_route\n",
    "\n",
    "#ön yüzle ilişkilendirme\n",
    "\n",
    "train_model_route\n",
    "\n",
    "#title category ile ilişkilendirlecek\n",
    "\n",
    "\n",
    "#subheadingler subcategroy ile ilişkilendirieck\n",
    "\n",
    "#prompt token uzunlukları kontrol edilerek bütün tokenlerin aynı uzunlukta olması sağlanmalıdır.\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "myenv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.9"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}