File size: 58,370 Bytes
5cd7165
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
{
 "cells": [
  {
   "cell_type": "code",
   "execution_count": 1,
   "metadata": {},
   "outputs": [
    {
     "ename": "OSError",
     "evalue": "[WinError 126] Belirtilen modül bulunamadı. Error loading \"c:\\Users\\info\\anaconda3\\Lib\\site-packages\\torch\\lib\\fbgemm.dll\" or one of its dependencies.",
     "output_type": "error",
     "traceback": [
      "\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
      "\u001b[1;31mOSError\u001b[0m                                   Traceback (most recent call last)",
      "Cell \u001b[1;32mIn[1], line 1\u001b[0m\n\u001b[1;32m----> 1\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m BertTokenizer, BertForMaskedLM, DPRContextEncoderTokenizer,DPRContextEncoder\n\u001b[0;32m      2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\info\\anaconda3\\Lib\\site-packages\\transformers\\__init__.py:26\u001b[0m\n\u001b[0;32m     23\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtyping\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m TYPE_CHECKING\n\u001b[0;32m     25\u001b[0m \u001b[38;5;66;03m# Check the dependencies satisfy the minimal versions required.\u001b[39;00m\n\u001b[1;32m---> 26\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m dependency_versions_check\n\u001b[0;32m     27\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[0;32m     28\u001b[0m     OptionalDependencyNotAvailable,\n\u001b[0;32m     29\u001b[0m     _LazyModule,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m     48\u001b[0m     logging,\n\u001b[0;32m     49\u001b[0m )\n\u001b[0;32m     52\u001b[0m logger \u001b[38;5;241m=\u001b[39m logging\u001b[38;5;241m.\u001b[39mget_logger(\u001b[38;5;18m__name__\u001b[39m)  \u001b[38;5;66;03m# pylint: disable=invalid-name\u001b[39;00m\n",
      "File \u001b[1;32mc:\\Users\\info\\anaconda3\\Lib\\site-packages\\transformers\\dependency_versions_check.py:16\u001b[0m\n\u001b[0;32m      1\u001b[0m \u001b[38;5;66;03m# Copyright 2020 The HuggingFace Team. All rights reserved.\u001b[39;00m\n\u001b[0;32m      2\u001b[0m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[0;32m      3\u001b[0m \u001b[38;5;66;03m# Licensed under the Apache License, Version 2.0 (the \"License\");\u001b[39;00m\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m     12\u001b[0m \u001b[38;5;66;03m# See the License for the specific language governing permissions and\u001b[39;00m\n\u001b[0;32m     13\u001b[0m \u001b[38;5;66;03m# limitations under the License.\u001b[39;00m\n\u001b[0;32m     15\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdependency_versions_table\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m deps\n\u001b[1;32m---> 16\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mversions\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m require_version, require_version_core\n\u001b[0;32m     19\u001b[0m \u001b[38;5;66;03m# define which module versions we always want to check at run time\u001b[39;00m\n\u001b[0;32m     20\u001b[0m \u001b[38;5;66;03m# (usually the ones defined in `install_requires` in setup.py)\u001b[39;00m\n\u001b[0;32m     21\u001b[0m \u001b[38;5;66;03m#\u001b[39;00m\n\u001b[0;32m     22\u001b[0m \u001b[38;5;66;03m# order specific notes:\u001b[39;00m\n\u001b[0;32m     23\u001b[0m \u001b[38;5;66;03m# - tqdm must be checked before tokenizers\u001b[39;00m\n\u001b[0;32m     25\u001b[0m pkgs_to_check_at_runtime \u001b[38;5;241m=\u001b[39m [\n\u001b[0;32m     26\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpython\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m     27\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mtqdm\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m     37\u001b[0m     \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mpyyaml\u001b[39m\u001b[38;5;124m\"\u001b[39m,\n\u001b[0;32m     38\u001b[0m ]\n",
      "File \u001b[1;32mc:\\Users\\info\\anaconda3\\Lib\\site-packages\\transformers\\utils\\__init__.py:34\u001b[0m\n\u001b[0;32m     25\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mconstants\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m IMAGENET_DEFAULT_MEAN, IMAGENET_DEFAULT_STD, IMAGENET_STANDARD_MEAN, IMAGENET_STANDARD_STD\n\u001b[0;32m     26\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mdoc\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[0;32m     27\u001b[0m     add_code_sample_docstrings,\n\u001b[0;32m     28\u001b[0m     add_end_docstrings,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m     32\u001b[0m     replace_return_docstrings,\n\u001b[0;32m     33\u001b[0m )\n\u001b[1;32m---> 34\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mgeneric\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[0;32m     35\u001b[0m     ContextManagers,\n\u001b[0;32m     36\u001b[0m     ExplicitEnum,\n\u001b[0;32m     37\u001b[0m     ModelOutput,\n\u001b[0;32m     38\u001b[0m     PaddingStrategy,\n\u001b[0;32m     39\u001b[0m     TensorType,\n\u001b[0;32m     40\u001b[0m     add_model_info_to_auto_map,\n\u001b[0;32m     41\u001b[0m     add_model_info_to_custom_pipelines,\n\u001b[0;32m     42\u001b[0m     cached_property,\n\u001b[0;32m     43\u001b[0m     can_return_loss,\n\u001b[0;32m     44\u001b[0m     expand_dims,\n\u001b[0;32m     45\u001b[0m     filter_out_non_signature_kwargs,\n\u001b[0;32m     46\u001b[0m     find_labels,\n\u001b[0;32m     47\u001b[0m     flatten_dict,\n\u001b[0;32m     48\u001b[0m     infer_framework,\n\u001b[0;32m     49\u001b[0m     is_jax_tensor,\n\u001b[0;32m     50\u001b[0m     is_numpy_array,\n\u001b[0;32m     51\u001b[0m     is_tensor,\n\u001b[0;32m     52\u001b[0m     is_tf_symbolic_tensor,\n\u001b[0;32m     53\u001b[0m     is_tf_tensor,\n\u001b[0;32m     54\u001b[0m     is_torch_device,\n\u001b[0;32m     55\u001b[0m     is_torch_dtype,\n\u001b[0;32m     56\u001b[0m     is_torch_tensor,\n\u001b[0;32m     57\u001b[0m     reshape,\n\u001b[0;32m     58\u001b[0m     squeeze,\n\u001b[0;32m     59\u001b[0m     strtobool,\n\u001b[0;32m     60\u001b[0m     tensor_size,\n\u001b[0;32m     61\u001b[0m     to_numpy,\n\u001b[0;32m     62\u001b[0m     to_py_obj,\n\u001b[0;32m     63\u001b[0m     torch_float,\n\u001b[0;32m     64\u001b[0m     torch_int,\n\u001b[0;32m     65\u001b[0m     transpose,\n\u001b[0;32m     66\u001b[0m     working_or_temp_dir,\n\u001b[0;32m     67\u001b[0m )\n\u001b[0;32m     68\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mhub\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[0;32m     69\u001b[0m     CLOUDFRONT_DISTRIB_PREFIX,\n\u001b[0;32m     70\u001b[0m     HF_MODULES_CACHE,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m     96\u001b[0m     try_to_load_from_cache,\n\u001b[0;32m     97\u001b[0m )\n\u001b[0;32m     98\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mimport_utils\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m (\n\u001b[0;32m     99\u001b[0m     ACCELERATE_MIN_VERSION,\n\u001b[0;32m    100\u001b[0m     ENV_VARS_TRUE_AND_AUTO_VALUES,\n\u001b[1;32m   (...)\u001b[0m\n\u001b[0;32m    219\u001b[0m     torch_only_method,\n\u001b[0;32m    220\u001b[0m )\n",
      "File \u001b[1;32mc:\\Users\\info\\anaconda3\\Lib\\site-packages\\transformers\\utils\\generic.py:462\u001b[0m\n\u001b[0;32m    458\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mtuple\u001b[39m(\u001b[38;5;28mself\u001b[39m[k] \u001b[38;5;28;01mfor\u001b[39;00m k \u001b[38;5;129;01min\u001b[39;00m \u001b[38;5;28mself\u001b[39m\u001b[38;5;241m.\u001b[39mkeys())\n\u001b[0;32m    461\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m is_torch_available():\n\u001b[1;32m--> 462\u001b[0m     \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtorch\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01mutils\u001b[39;00m\u001b[38;5;21;01m.\u001b[39;00m\u001b[38;5;21;01m_pytree\u001b[39;00m \u001b[38;5;28;01mas\u001b[39;00m \u001b[38;5;21;01m_torch_pytree\u001b[39;00m\n\u001b[0;32m    464\u001b[0m     \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_model_output_flatten\u001b[39m(output: ModelOutput) \u001b[38;5;241m-\u001b[39m\u001b[38;5;241m>\u001b[39m Tuple[List[Any], \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m_torch_pytree.Context\u001b[39m\u001b[38;5;124m\"\u001b[39m]:\n\u001b[0;32m    465\u001b[0m         \u001b[38;5;28;01mreturn\u001b[39;00m \u001b[38;5;28mlist\u001b[39m(output\u001b[38;5;241m.\u001b[39mvalues()), \u001b[38;5;28mlist\u001b[39m(output\u001b[38;5;241m.\u001b[39mkeys())\n",
      "File \u001b[1;32mc:\\Users\\info\\anaconda3\\Lib\\site-packages\\torch\\__init__.py:148\u001b[0m\n\u001b[0;32m    146\u001b[0m                 err \u001b[38;5;241m=\u001b[39m ctypes\u001b[38;5;241m.\u001b[39mWinError(ctypes\u001b[38;5;241m.\u001b[39mget_last_error())\n\u001b[0;32m    147\u001b[0m                 err\u001b[38;5;241m.\u001b[39mstrerror \u001b[38;5;241m+\u001b[39m\u001b[38;5;241m=\u001b[39m \u001b[38;5;124mf\u001b[39m\u001b[38;5;124m'\u001b[39m\u001b[38;5;124m Error loading \u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mdll\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124m or one of its dependencies.\u001b[39m\u001b[38;5;124m'\u001b[39m\n\u001b[1;32m--> 148\u001b[0m                 \u001b[38;5;28;01mraise\u001b[39;00m err\n\u001b[0;32m    150\u001b[0m     kernel32\u001b[38;5;241m.\u001b[39mSetErrorMode(prev_error_mode)\n\u001b[0;32m    153\u001b[0m \u001b[38;5;28;01mdef\u001b[39;00m \u001b[38;5;21m_preload_cuda_deps\u001b[39m(lib_folder, lib_name):\n",
      "\u001b[1;31mOSError\u001b[0m: [WinError 126] Belirtilen modül bulunamadı. Error loading \"c:\\Users\\info\\anaconda3\\Lib\\site-packages\\torch\\lib\\fbgemm.dll\" or one of its dependencies."
     ]
    }
   ],
   "source": [
    "from transformers import BertTokenizer, BertForMaskedLM, DPRContextEncoderTokenizer,DPRContextEncoder\n",
    "import torch "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 2,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\gitProjects\\makaleChatUI\\myenv\\Lib\\site-packages\\huggingface_hub\\file_download.py:159: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\info\\.cache\\huggingface\\hub\\models--bert-base-uncased. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
      "To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
      "  warnings.warn(message)\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `beta` will be renamed internally to `bias`. Please use a different name to suppress this warning.\n",
      "A parameter name that contains `gamma` will be renamed internally to `weight`. Please use a different name to suppress this warning.\n",
      "Some weights of the model checkpoint at bert-base-uncased were not used when initializing BertForMaskedLM: ['bert.pooler.dense.bias', 'bert.pooler.dense.weight', 'cls.seq_relationship.bias', 'cls.seq_relationship.weight']\n",
      "- This IS expected if you are initializing BertForMaskedLM from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing BertForMaskedLM from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    }
   ],
   "source": [
    "tokenizer= BertTokenizer.from_pretrained('bert-base-uncased')\n",
    "model=BertForMaskedLM.from_pretrained('bert-base-uncased')\n",
    "\n",
    "text=(\"After reading these reports,\"\n",
    "       \"we start an outline of the application of ML.\"\n",
    "        \"It includes the [MASK] process \"\n",
    "        \"and various applications (from various software development to hardware development), to [MASK] of IT systems, and various approaches on analytics.\"\n",
    "        \"The approach incorporates [MASK] as well as computing and data mining.\"\n",
    "        \"For example, software developers and manufacturing engineers used AI \"\n",
    "        \"in manufacturing to develop their applications.\"\n",
    "      )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 4,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['input_ids', 'token_type_ids', 'attention_mask'])"
      ]
     },
     "execution_count": 4,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#maskeleme yaptıktan sonra tokenlere çeviriyoruz\n",
    "inputs= tokenizer(text,return_tensors='pt')\n",
    "inputs.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 5,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[  101,  2044,  3752,  2122,  4311,  1010,  2057,  2707,  2019, 12685,\n",
       "          1997,  1996,  4646,  1997, 19875,  1012,  2009,  2950,  1996,   103,\n",
       "          2832,  1998,  2536,  5097,  1006,  2013,  2536,  4007,  2458,  2000,\n",
       "          8051,  2458,  1007,  1010,  2000,   103,  1997,  2009,  3001,  1010,\n",
       "          1998,  2536,  8107,  2006, 25095,  1012,  1996,  3921, 12374,   103,\n",
       "          2004,  2092,  2004,  9798,  1998,  2951,  5471,  1012,  2005,  2742,\n",
       "          1010,  4007,  9797,  1998,  5814,  6145,  2109,  9932,  1999,  5814,\n",
       "          2000,  4503,  2037,  5097,  1012,   102]])"
      ]
     },
     "execution_count": 5,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "inputs.input_ids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 6,
   "metadata": {},
   "outputs": [],
   "source": [
    "text_normal= (\"After reading these reports,\"\n",
    "       \"we start an outline of the application of ML.\"\n",
    "        \"It includes the learning process \"\n",
    "        \"and various applications (from various software development to hardware development), to analysis of IT systems, and various approaches on analytics.\"\n",
    "        \"The approach incorporates AI as well as computing and data mining.\"\n",
    "        \"For example, software developers and manufacturing engineers used AI \"\n",
    "        \"in manufacturing to develop their applications.\"\n",
    "      )"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 8,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "dict_keys(['input_ids', 'token_type_ids', 'attention_mask'])"
      ]
     },
     "execution_count": 8,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#texti tokenlere çeviriyoruz\n",
    "inputs_2= tokenizer(text_normal,return_tensors='pt')\n",
    "inputs_2.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 9,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[  101,  2044,  3752,  2122,  4311,  1010,  2057,  2707,  2019, 12685,\n",
       "          1997,  1996,  4646,  1997, 19875,  1012,  2009,  2950,  1996,  4083,\n",
       "          2832,  1998,  2536,  5097,  1006,  2013,  2536,  4007,  2458,  2000,\n",
       "          8051,  2458,  1007,  1010,  2000,  4106,  1997,  2009,  3001,  1010,\n",
       "          1998,  2536,  8107,  2006, 25095,  1012,  1996,  3921, 12374,  9932,\n",
       "          2004,  2092,  2004,  9798,  1998,  2951,  5471,  1012,  2005,  2742,\n",
       "          1010,  4007,  9797,  1998,  5814,  6145,  2109,  9932,  1999,  5814,\n",
       "          2000,  4503,  2037,  5097,  1012,   102]])"
      ]
     },
     "execution_count": 9,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "inputs_2.input_ids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 10,
   "metadata": {},
   "outputs": [],
   "source": [
    "inputs_2['labels']= inputs_2.input_ids.detach().clone()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 11,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "{'input_ids': tensor([[  101,  2044,  3752,  2122,  4311,  1010,  2057,  2707,  2019, 12685,\n",
       "          1997,  1996,  4646,  1997, 19875,  1012,  2009,  2950,  1996,  4083,\n",
       "          2832,  1998,  2536,  5097,  1006,  2013,  2536,  4007,  2458,  2000,\n",
       "          8051,  2458,  1007,  1010,  2000,  4106,  1997,  2009,  3001,  1010,\n",
       "          1998,  2536,  8107,  2006, 25095,  1012,  1996,  3921, 12374,  9932,\n",
       "          2004,  2092,  2004,  9798,  1998,  2951,  5471,  1012,  2005,  2742,\n",
       "          1010,  4007,  9797,  1998,  5814,  6145,  2109,  9932,  1999,  5814,\n",
       "          2000,  4503,  2037,  5097,  1012,   102]]), 'token_type_ids': tensor([[0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "         0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
       "         0, 0, 0, 0]]), 'attention_mask': tensor([[1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
       "         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
       "         1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
       "         1, 1, 1, 1]]), 'labels': tensor([[  101,  2044,  3752,  2122,  4311,  1010,  2057,  2707,  2019, 12685,\n",
       "          1997,  1996,  4646,  1997, 19875,  1012,  2009,  2950,  1996,  4083,\n",
       "          2832,  1998,  2536,  5097,  1006,  2013,  2536,  4007,  2458,  2000,\n",
       "          8051,  2458,  1007,  1010,  2000,  4106,  1997,  2009,  3001,  1010,\n",
       "          1998,  2536,  8107,  2006, 25095,  1012,  1996,  3921, 12374,  9932,\n",
       "          2004,  2092,  2004,  9798,  1998,  2951,  5471,  1012,  2005,  2742,\n",
       "          1010,  4007,  9797,  1998,  5814,  6145,  2109,  9932,  1999,  5814,\n",
       "          2000,  4503,  2037,  5097,  1012,   102]])}"
      ]
     },
     "execution_count": 11,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "inputs_2"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 12,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "torch.Size([1, 76])"
      ]
     },
     "execution_count": 12,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#random tokenler oluşturacağız labelsiz\n",
    "rand=torch.rand(inputs_2.input_ids.shape)\n",
    "rand.shape"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 13,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[0.9397, 0.1325, 0.1893, 0.8258, 0.7453, 0.1766, 0.9338, 0.0806, 0.0626,\n",
       "         0.6665, 0.4240, 0.3946, 0.5413, 0.3799, 0.4023, 0.8699, 0.8159, 0.1511,\n",
       "         0.6842, 0.0242, 0.7235, 0.0063, 0.1857, 0.9684, 0.8930, 0.8208, 0.5711,\n",
       "         0.0345, 0.9919, 0.1140, 0.7597, 0.4546, 0.6478, 0.2295, 0.2846, 0.6314,\n",
       "         0.3640, 0.9291, 0.3843, 0.3553, 0.1125, 0.0790, 0.4261, 0.4307, 0.6724,\n",
       "         0.8569, 0.4476, 0.8032, 0.0241, 0.0152, 0.4196, 0.5609, 0.0010, 0.7240,\n",
       "         0.4531, 0.5834, 0.5232, 0.3602, 0.6575, 0.9012, 0.1519, 0.2255, 0.0799,\n",
       "         0.5673, 0.7244, 0.4387, 0.2713, 0.4243, 0.8435, 0.1670, 0.8664, 0.6261,\n",
       "         0.4090, 0.2988, 0.3379, 0.7784]])"
      ]
     },
     "execution_count": 13,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "rand"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 14,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[False,  True, False, False, False, False, False,  True,  True, False,\n",
       "         False, False, False, False, False, False, False, False, False,  True,\n",
       "         False,  True, False, False, False, False, False,  True, False,  True,\n",
       "         False, False, False, False, False, False, False, False, False, False,\n",
       "          True,  True, False, False, False, False, False, False,  True,  True,\n",
       "         False, False,  True, False, False, False, False, False, False, False,\n",
       "         False, False,  True, False, False, False, False, False, False, False,\n",
       "         False, False, False, False, False, False]])"
      ]
     },
     "execution_count": 14,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#cümledeki toknelerin yüzde 15 alınır \n",
    "#mask_arr = rand < 0.15 ifadesi, rand fonksiyonunun her bir token için rastgele bir sayı üreteceğini ve bu sayının 0.15'ten küçük olup olmadığına bakarak token'ın maskelenip maskelenmeyeceğini belirler. Eğer sayı 0.15'ten küçükse, token maskelenir; değilse, maskelenmez. \n",
    "mask_arr = rand < 0.15\n",
    "mask_arr"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 15,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "[1, 7, 8, 19, 21, 27, 29, 40, 41, 48, 49, 52, 62]"
      ]
     },
     "execution_count": 15,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#burada seçilen değer maskeleme yapılan tokenlarda 0 olmayan karakterlerin yazılmasıdır.\n",
    "#torch flatten özelliği listeden çıkartarak yalnızca bir array olmasını sağladı\n",
    "selection= torch.flatten(mask_arr[0].nonzero()).tolist()\n",
    "selection"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 16,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor([[  101,   103,  3752,  2122,  4311,  1010,  2057,   103,   103, 12685,\n",
       "          1997,  1996,  4646,  1997, 19875,  1012,  2009,  2950,  1996,   103,\n",
       "          2832,   103,  2536,  5097,  1006,  2013,  2536,   103,  2458,   103,\n",
       "          8051,  2458,  1007,  1010,  2000,  4106,  1997,  2009,  3001,  1010,\n",
       "           103,   103,  8107,  2006, 25095,  1012,  1996,  3921,   103,   103,\n",
       "          2004,  2092,   103,  9798,  1998,  2951,  5471,  1012,  2005,  2742,\n",
       "          1010,  4007,   103,  1998,  5814,  6145,  2109,  9932,  1999,  5814,\n",
       "          2000,  4503,  2037,  5097,  1012,   102]])"
      ]
     },
     "execution_count": 16,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "#input_ids değerleri 0 olanlar için 103 değerinim atadık \n",
    "inputs_2.input_ids[0,selection]=103\n",
    "inputs_2.input_ids"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 17,
   "metadata": {},
   "outputs": [],
   "source": [
    "outputs= model(**inputs_2)"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 18,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "odict_keys(['loss', 'logits'])"
      ]
     },
     "execution_count": 18,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "outputs.keys()"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 19,
   "metadata": {},
   "outputs": [
    {
     "data": {
      "text/plain": [
       "tensor(0.8399, grad_fn=<NllLossBackward0>)"
      ]
     },
     "execution_count": 19,
     "metadata": {},
     "output_type": "execute_result"
    }
   ],
   "source": [
    "outputs.loss"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": 22,
   "metadata": {},
   "outputs": [
    {
     "name": "stderr",
     "output_type": "stream",
     "text": [
      "c:\\gitProjects\\makaleChatUI\\myenv\\Lib\\site-packages\\huggingface_hub\\file_download.py:159: UserWarning: `huggingface_hub` cache-system uses symlinks by default to efficiently store duplicated files but your machine does not support them in C:\\Users\\info\\.cache\\huggingface\\hub\\models--facebook--dpr-ctx_encoder-single-nq-base. Caching files will still work but in a degraded version that might require more space on your disk. This warning can be disabled by setting the `HF_HUB_DISABLE_SYMLINKS_WARNING` environment variable. For more details, see https://huggingface.co/docs/huggingface_hub/how-to-cache#limitations.\n",
      "To support symlinks on Windows, you either need to activate Developer Mode or to run Python as an administrator. In order to see activate developer mode, see this article: https://docs.microsoft.com/en-us/windows/apps/get-started/enable-your-device-for-development\n",
      "  warnings.warn(message)\n",
      "Some weights of DPRQuestionEncoder were not initialized from the model checkpoint at facebook/dpr-ctx_encoder-single-nq-base and are newly initialized: ['bert_model.embeddings.LayerNorm.bias', 'bert_model.embeddings.LayerNorm.weight', 'bert_model.embeddings.position_embeddings.weight', 'bert_model.embeddings.token_type_embeddings.weight', 'bert_model.embeddings.word_embeddings.weight', 'bert_model.encoder.layer.0.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.0.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.0.attention.output.dense.bias', 'bert_model.encoder.layer.0.attention.output.dense.weight', 'bert_model.encoder.layer.0.attention.self.key.bias', 'bert_model.encoder.layer.0.attention.self.key.weight', 'bert_model.encoder.layer.0.attention.self.query.bias', 'bert_model.encoder.layer.0.attention.self.query.weight', 'bert_model.encoder.layer.0.attention.self.value.bias', 'bert_model.encoder.layer.0.attention.self.value.weight', 'bert_model.encoder.layer.0.intermediate.dense.bias', 'bert_model.encoder.layer.0.intermediate.dense.weight', 'bert_model.encoder.layer.0.output.LayerNorm.bias', 'bert_model.encoder.layer.0.output.LayerNorm.weight', 'bert_model.encoder.layer.0.output.dense.bias', 'bert_model.encoder.layer.0.output.dense.weight', 'bert_model.encoder.layer.1.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.1.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.1.attention.output.dense.bias', 'bert_model.encoder.layer.1.attention.output.dense.weight', 'bert_model.encoder.layer.1.attention.self.key.bias', 'bert_model.encoder.layer.1.attention.self.key.weight', 'bert_model.encoder.layer.1.attention.self.query.bias', 'bert_model.encoder.layer.1.attention.self.query.weight', 'bert_model.encoder.layer.1.attention.self.value.bias', 'bert_model.encoder.layer.1.attention.self.value.weight', 'bert_model.encoder.layer.1.intermediate.dense.bias', 'bert_model.encoder.layer.1.intermediate.dense.weight', 'bert_model.encoder.layer.1.output.LayerNorm.bias', 'bert_model.encoder.layer.1.output.LayerNorm.weight', 'bert_model.encoder.layer.1.output.dense.bias', 'bert_model.encoder.layer.1.output.dense.weight', 'bert_model.encoder.layer.10.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.10.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.10.attention.output.dense.bias', 'bert_model.encoder.layer.10.attention.output.dense.weight', 'bert_model.encoder.layer.10.attention.self.key.bias', 'bert_model.encoder.layer.10.attention.self.key.weight', 'bert_model.encoder.layer.10.attention.self.query.bias', 'bert_model.encoder.layer.10.attention.self.query.weight', 'bert_model.encoder.layer.10.attention.self.value.bias', 'bert_model.encoder.layer.10.attention.self.value.weight', 'bert_model.encoder.layer.10.intermediate.dense.bias', 'bert_model.encoder.layer.10.intermediate.dense.weight', 'bert_model.encoder.layer.10.output.LayerNorm.bias', 'bert_model.encoder.layer.10.output.LayerNorm.weight', 'bert_model.encoder.layer.10.output.dense.bias', 'bert_model.encoder.layer.10.output.dense.weight', 'bert_model.encoder.layer.11.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.11.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.11.attention.output.dense.bias', 'bert_model.encoder.layer.11.attention.output.dense.weight', 'bert_model.encoder.layer.11.attention.self.key.bias', 'bert_model.encoder.layer.11.attention.self.key.weight', 'bert_model.encoder.layer.11.attention.self.query.bias', 'bert_model.encoder.layer.11.attention.self.query.weight', 'bert_model.encoder.layer.11.attention.self.value.bias', 'bert_model.encoder.layer.11.attention.self.value.weight', 'bert_model.encoder.layer.11.intermediate.dense.bias', 'bert_model.encoder.layer.11.intermediate.dense.weight', 'bert_model.encoder.layer.11.output.LayerNorm.bias', 'bert_model.encoder.layer.11.output.LayerNorm.weight', 'bert_model.encoder.layer.11.output.dense.bias', 'bert_model.encoder.layer.11.output.dense.weight', 'bert_model.encoder.layer.2.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.2.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.2.attention.output.dense.bias', 'bert_model.encoder.layer.2.attention.output.dense.weight', 'bert_model.encoder.layer.2.attention.self.key.bias', 'bert_model.encoder.layer.2.attention.self.key.weight', 'bert_model.encoder.layer.2.attention.self.query.bias', 'bert_model.encoder.layer.2.attention.self.query.weight', 'bert_model.encoder.layer.2.attention.self.value.bias', 'bert_model.encoder.layer.2.attention.self.value.weight', 'bert_model.encoder.layer.2.intermediate.dense.bias', 'bert_model.encoder.layer.2.intermediate.dense.weight', 'bert_model.encoder.layer.2.output.LayerNorm.bias', 'bert_model.encoder.layer.2.output.LayerNorm.weight', 'bert_model.encoder.layer.2.output.dense.bias', 'bert_model.encoder.layer.2.output.dense.weight', 'bert_model.encoder.layer.3.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.3.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.3.attention.output.dense.bias', 'bert_model.encoder.layer.3.attention.output.dense.weight', 'bert_model.encoder.layer.3.attention.self.key.bias', 'bert_model.encoder.layer.3.attention.self.key.weight', 'bert_model.encoder.layer.3.attention.self.query.bias', 'bert_model.encoder.layer.3.attention.self.query.weight', 'bert_model.encoder.layer.3.attention.self.value.bias', 'bert_model.encoder.layer.3.attention.self.value.weight', 'bert_model.encoder.layer.3.intermediate.dense.bias', 'bert_model.encoder.layer.3.intermediate.dense.weight', 'bert_model.encoder.layer.3.output.LayerNorm.bias', 'bert_model.encoder.layer.3.output.LayerNorm.weight', 'bert_model.encoder.layer.3.output.dense.bias', 'bert_model.encoder.layer.3.output.dense.weight', 'bert_model.encoder.layer.4.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.4.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.4.attention.output.dense.bias', 'bert_model.encoder.layer.4.attention.output.dense.weight', 'bert_model.encoder.layer.4.attention.self.key.bias', 'bert_model.encoder.layer.4.attention.self.key.weight', 'bert_model.encoder.layer.4.attention.self.query.bias', 'bert_model.encoder.layer.4.attention.self.query.weight', 'bert_model.encoder.layer.4.attention.self.value.bias', 'bert_model.encoder.layer.4.attention.self.value.weight', 'bert_model.encoder.layer.4.intermediate.dense.bias', 'bert_model.encoder.layer.4.intermediate.dense.weight', 'bert_model.encoder.layer.4.output.LayerNorm.bias', 'bert_model.encoder.layer.4.output.LayerNorm.weight', 'bert_model.encoder.layer.4.output.dense.bias', 'bert_model.encoder.layer.4.output.dense.weight', 'bert_model.encoder.layer.5.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.5.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.5.attention.output.dense.bias', 'bert_model.encoder.layer.5.attention.output.dense.weight', 'bert_model.encoder.layer.5.attention.self.key.bias', 'bert_model.encoder.layer.5.attention.self.key.weight', 'bert_model.encoder.layer.5.attention.self.query.bias', 'bert_model.encoder.layer.5.attention.self.query.weight', 'bert_model.encoder.layer.5.attention.self.value.bias', 'bert_model.encoder.layer.5.attention.self.value.weight', 'bert_model.encoder.layer.5.intermediate.dense.bias', 'bert_model.encoder.layer.5.intermediate.dense.weight', 'bert_model.encoder.layer.5.output.LayerNorm.bias', 'bert_model.encoder.layer.5.output.LayerNorm.weight', 'bert_model.encoder.layer.5.output.dense.bias', 'bert_model.encoder.layer.5.output.dense.weight', 'bert_model.encoder.layer.6.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.6.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.6.attention.output.dense.bias', 'bert_model.encoder.layer.6.attention.output.dense.weight', 'bert_model.encoder.layer.6.attention.self.key.bias', 'bert_model.encoder.layer.6.attention.self.key.weight', 'bert_model.encoder.layer.6.attention.self.query.bias', 'bert_model.encoder.layer.6.attention.self.query.weight', 'bert_model.encoder.layer.6.attention.self.value.bias', 'bert_model.encoder.layer.6.attention.self.value.weight', 'bert_model.encoder.layer.6.intermediate.dense.bias', 'bert_model.encoder.layer.6.intermediate.dense.weight', 'bert_model.encoder.layer.6.output.LayerNorm.bias', 'bert_model.encoder.layer.6.output.LayerNorm.weight', 'bert_model.encoder.layer.6.output.dense.bias', 'bert_model.encoder.layer.6.output.dense.weight', 'bert_model.encoder.layer.7.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.7.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.7.attention.output.dense.bias', 'bert_model.encoder.layer.7.attention.output.dense.weight', 'bert_model.encoder.layer.7.attention.self.key.bias', 'bert_model.encoder.layer.7.attention.self.key.weight', 'bert_model.encoder.layer.7.attention.self.query.bias', 'bert_model.encoder.layer.7.attention.self.query.weight', 'bert_model.encoder.layer.7.attention.self.value.bias', 'bert_model.encoder.layer.7.attention.self.value.weight', 'bert_model.encoder.layer.7.intermediate.dense.bias', 'bert_model.encoder.layer.7.intermediate.dense.weight', 'bert_model.encoder.layer.7.output.LayerNorm.bias', 'bert_model.encoder.layer.7.output.LayerNorm.weight', 'bert_model.encoder.layer.7.output.dense.bias', 'bert_model.encoder.layer.7.output.dense.weight', 'bert_model.encoder.layer.8.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.8.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.8.attention.output.dense.bias', 'bert_model.encoder.layer.8.attention.output.dense.weight', 'bert_model.encoder.layer.8.attention.self.key.bias', 'bert_model.encoder.layer.8.attention.self.key.weight', 'bert_model.encoder.layer.8.attention.self.query.bias', 'bert_model.encoder.layer.8.attention.self.query.weight', 'bert_model.encoder.layer.8.attention.self.value.bias', 'bert_model.encoder.layer.8.attention.self.value.weight', 'bert_model.encoder.layer.8.intermediate.dense.bias', 'bert_model.encoder.layer.8.intermediate.dense.weight', 'bert_model.encoder.layer.8.output.LayerNorm.bias', 'bert_model.encoder.layer.8.output.LayerNorm.weight', 'bert_model.encoder.layer.8.output.dense.bias', 'bert_model.encoder.layer.8.output.dense.weight', 'bert_model.encoder.layer.9.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.9.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.9.attention.output.dense.bias', 'bert_model.encoder.layer.9.attention.output.dense.weight', 'bert_model.encoder.layer.9.attention.self.key.bias', 'bert_model.encoder.layer.9.attention.self.key.weight', 'bert_model.encoder.layer.9.attention.self.query.bias', 'bert_model.encoder.layer.9.attention.self.query.weight', 'bert_model.encoder.layer.9.attention.self.value.bias', 'bert_model.encoder.layer.9.attention.self.value.weight', 'bert_model.encoder.layer.9.intermediate.dense.bias', 'bert_model.encoder.layer.9.intermediate.dense.weight', 'bert_model.encoder.layer.9.output.LayerNorm.bias', 'bert_model.encoder.layer.9.output.LayerNorm.weight', 'bert_model.encoder.layer.9.output.dense.bias', 'bert_model.encoder.layer.9.output.dense.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
      "Some weights of DPRQuestionEncoder were not initialized from the model checkpoint at facebook/dpr-ctx_encoder-single-nq-base and are newly initialized: ['bert_model.embeddings.LayerNorm.bias', 'bert_model.embeddings.LayerNorm.weight', 'bert_model.embeddings.position_embeddings.weight', 'bert_model.embeddings.token_type_embeddings.weight', 'bert_model.embeddings.word_embeddings.weight', 'bert_model.encoder.layer.0.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.0.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.0.attention.output.dense.bias', 'bert_model.encoder.layer.0.attention.output.dense.weight', 'bert_model.encoder.layer.0.attention.self.key.bias', 'bert_model.encoder.layer.0.attention.self.key.weight', 'bert_model.encoder.layer.0.attention.self.query.bias', 'bert_model.encoder.layer.0.attention.self.query.weight', 'bert_model.encoder.layer.0.attention.self.value.bias', 'bert_model.encoder.layer.0.attention.self.value.weight', 'bert_model.encoder.layer.0.intermediate.dense.bias', 'bert_model.encoder.layer.0.intermediate.dense.weight', 'bert_model.encoder.layer.0.output.LayerNorm.bias', 'bert_model.encoder.layer.0.output.LayerNorm.weight', 'bert_model.encoder.layer.0.output.dense.bias', 'bert_model.encoder.layer.0.output.dense.weight', 'bert_model.encoder.layer.1.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.1.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.1.attention.output.dense.bias', 'bert_model.encoder.layer.1.attention.output.dense.weight', 'bert_model.encoder.layer.1.attention.self.key.bias', 'bert_model.encoder.layer.1.attention.self.key.weight', 'bert_model.encoder.layer.1.attention.self.query.bias', 'bert_model.encoder.layer.1.attention.self.query.weight', 'bert_model.encoder.layer.1.attention.self.value.bias', 'bert_model.encoder.layer.1.attention.self.value.weight', 'bert_model.encoder.layer.1.intermediate.dense.bias', 'bert_model.encoder.layer.1.intermediate.dense.weight', 'bert_model.encoder.layer.1.output.LayerNorm.bias', 'bert_model.encoder.layer.1.output.LayerNorm.weight', 'bert_model.encoder.layer.1.output.dense.bias', 'bert_model.encoder.layer.1.output.dense.weight', 'bert_model.encoder.layer.10.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.10.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.10.attention.output.dense.bias', 'bert_model.encoder.layer.10.attention.output.dense.weight', 'bert_model.encoder.layer.10.attention.self.key.bias', 'bert_model.encoder.layer.10.attention.self.key.weight', 'bert_model.encoder.layer.10.attention.self.query.bias', 'bert_model.encoder.layer.10.attention.self.query.weight', 'bert_model.encoder.layer.10.attention.self.value.bias', 'bert_model.encoder.layer.10.attention.self.value.weight', 'bert_model.encoder.layer.10.intermediate.dense.bias', 'bert_model.encoder.layer.10.intermediate.dense.weight', 'bert_model.encoder.layer.10.output.LayerNorm.bias', 'bert_model.encoder.layer.10.output.LayerNorm.weight', 'bert_model.encoder.layer.10.output.dense.bias', 'bert_model.encoder.layer.10.output.dense.weight', 'bert_model.encoder.layer.11.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.11.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.11.attention.output.dense.bias', 'bert_model.encoder.layer.11.attention.output.dense.weight', 'bert_model.encoder.layer.11.attention.self.key.bias', 'bert_model.encoder.layer.11.attention.self.key.weight', 'bert_model.encoder.layer.11.attention.self.query.bias', 'bert_model.encoder.layer.11.attention.self.query.weight', 'bert_model.encoder.layer.11.attention.self.value.bias', 'bert_model.encoder.layer.11.attention.self.value.weight', 'bert_model.encoder.layer.11.intermediate.dense.bias', 'bert_model.encoder.layer.11.intermediate.dense.weight', 'bert_model.encoder.layer.11.output.LayerNorm.bias', 'bert_model.encoder.layer.11.output.LayerNorm.weight', 'bert_model.encoder.layer.11.output.dense.bias', 'bert_model.encoder.layer.11.output.dense.weight', 'bert_model.encoder.layer.2.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.2.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.2.attention.output.dense.bias', 'bert_model.encoder.layer.2.attention.output.dense.weight', 'bert_model.encoder.layer.2.attention.self.key.bias', 'bert_model.encoder.layer.2.attention.self.key.weight', 'bert_model.encoder.layer.2.attention.self.query.bias', 'bert_model.encoder.layer.2.attention.self.query.weight', 'bert_model.encoder.layer.2.attention.self.value.bias', 'bert_model.encoder.layer.2.attention.self.value.weight', 'bert_model.encoder.layer.2.intermediate.dense.bias', 'bert_model.encoder.layer.2.intermediate.dense.weight', 'bert_model.encoder.layer.2.output.LayerNorm.bias', 'bert_model.encoder.layer.2.output.LayerNorm.weight', 'bert_model.encoder.layer.2.output.dense.bias', 'bert_model.encoder.layer.2.output.dense.weight', 'bert_model.encoder.layer.3.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.3.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.3.attention.output.dense.bias', 'bert_model.encoder.layer.3.attention.output.dense.weight', 'bert_model.encoder.layer.3.attention.self.key.bias', 'bert_model.encoder.layer.3.attention.self.key.weight', 'bert_model.encoder.layer.3.attention.self.query.bias', 'bert_model.encoder.layer.3.attention.self.query.weight', 'bert_model.encoder.layer.3.attention.self.value.bias', 'bert_model.encoder.layer.3.attention.self.value.weight', 'bert_model.encoder.layer.3.intermediate.dense.bias', 'bert_model.encoder.layer.3.intermediate.dense.weight', 'bert_model.encoder.layer.3.output.LayerNorm.bias', 'bert_model.encoder.layer.3.output.LayerNorm.weight', 'bert_model.encoder.layer.3.output.dense.bias', 'bert_model.encoder.layer.3.output.dense.weight', 'bert_model.encoder.layer.4.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.4.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.4.attention.output.dense.bias', 'bert_model.encoder.layer.4.attention.output.dense.weight', 'bert_model.encoder.layer.4.attention.self.key.bias', 'bert_model.encoder.layer.4.attention.self.key.weight', 'bert_model.encoder.layer.4.attention.self.query.bias', 'bert_model.encoder.layer.4.attention.self.query.weight', 'bert_model.encoder.layer.4.attention.self.value.bias', 'bert_model.encoder.layer.4.attention.self.value.weight', 'bert_model.encoder.layer.4.intermediate.dense.bias', 'bert_model.encoder.layer.4.intermediate.dense.weight', 'bert_model.encoder.layer.4.output.LayerNorm.bias', 'bert_model.encoder.layer.4.output.LayerNorm.weight', 'bert_model.encoder.layer.4.output.dense.bias', 'bert_model.encoder.layer.4.output.dense.weight', 'bert_model.encoder.layer.5.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.5.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.5.attention.output.dense.bias', 'bert_model.encoder.layer.5.attention.output.dense.weight', 'bert_model.encoder.layer.5.attention.self.key.bias', 'bert_model.encoder.layer.5.attention.self.key.weight', 'bert_model.encoder.layer.5.attention.self.query.bias', 'bert_model.encoder.layer.5.attention.self.query.weight', 'bert_model.encoder.layer.5.attention.self.value.bias', 'bert_model.encoder.layer.5.attention.self.value.weight', 'bert_model.encoder.layer.5.intermediate.dense.bias', 'bert_model.encoder.layer.5.intermediate.dense.weight', 'bert_model.encoder.layer.5.output.LayerNorm.bias', 'bert_model.encoder.layer.5.output.LayerNorm.weight', 'bert_model.encoder.layer.5.output.dense.bias', 'bert_model.encoder.layer.5.output.dense.weight', 'bert_model.encoder.layer.6.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.6.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.6.attention.output.dense.bias', 'bert_model.encoder.layer.6.attention.output.dense.weight', 'bert_model.encoder.layer.6.attention.self.key.bias', 'bert_model.encoder.layer.6.attention.self.key.weight', 'bert_model.encoder.layer.6.attention.self.query.bias', 'bert_model.encoder.layer.6.attention.self.query.weight', 'bert_model.encoder.layer.6.attention.self.value.bias', 'bert_model.encoder.layer.6.attention.self.value.weight', 'bert_model.encoder.layer.6.intermediate.dense.bias', 'bert_model.encoder.layer.6.intermediate.dense.weight', 'bert_model.encoder.layer.6.output.LayerNorm.bias', 'bert_model.encoder.layer.6.output.LayerNorm.weight', 'bert_model.encoder.layer.6.output.dense.bias', 'bert_model.encoder.layer.6.output.dense.weight', 'bert_model.encoder.layer.7.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.7.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.7.attention.output.dense.bias', 'bert_model.encoder.layer.7.attention.output.dense.weight', 'bert_model.encoder.layer.7.attention.self.key.bias', 'bert_model.encoder.layer.7.attention.self.key.weight', 'bert_model.encoder.layer.7.attention.self.query.bias', 'bert_model.encoder.layer.7.attention.self.query.weight', 'bert_model.encoder.layer.7.attention.self.value.bias', 'bert_model.encoder.layer.7.attention.self.value.weight', 'bert_model.encoder.layer.7.intermediate.dense.bias', 'bert_model.encoder.layer.7.intermediate.dense.weight', 'bert_model.encoder.layer.7.output.LayerNorm.bias', 'bert_model.encoder.layer.7.output.LayerNorm.weight', 'bert_model.encoder.layer.7.output.dense.bias', 'bert_model.encoder.layer.7.output.dense.weight', 'bert_model.encoder.layer.8.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.8.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.8.attention.output.dense.bias', 'bert_model.encoder.layer.8.attention.output.dense.weight', 'bert_model.encoder.layer.8.attention.self.key.bias', 'bert_model.encoder.layer.8.attention.self.key.weight', 'bert_model.encoder.layer.8.attention.self.query.bias', 'bert_model.encoder.layer.8.attention.self.query.weight', 'bert_model.encoder.layer.8.attention.self.value.bias', 'bert_model.encoder.layer.8.attention.self.value.weight', 'bert_model.encoder.layer.8.intermediate.dense.bias', 'bert_model.encoder.layer.8.intermediate.dense.weight', 'bert_model.encoder.layer.8.output.LayerNorm.bias', 'bert_model.encoder.layer.8.output.LayerNorm.weight', 'bert_model.encoder.layer.8.output.dense.bias', 'bert_model.encoder.layer.8.output.dense.weight', 'bert_model.encoder.layer.9.attention.output.LayerNorm.bias', 'bert_model.encoder.layer.9.attention.output.LayerNorm.weight', 'bert_model.encoder.layer.9.attention.output.dense.bias', 'bert_model.encoder.layer.9.attention.output.dense.weight', 'bert_model.encoder.layer.9.attention.self.key.bias', 'bert_model.encoder.layer.9.attention.self.key.weight', 'bert_model.encoder.layer.9.attention.self.query.bias', 'bert_model.encoder.layer.9.attention.self.query.weight', 'bert_model.encoder.layer.9.attention.self.value.bias', 'bert_model.encoder.layer.9.attention.self.value.weight', 'bert_model.encoder.layer.9.intermediate.dense.bias', 'bert_model.encoder.layer.9.intermediate.dense.weight', 'bert_model.encoder.layer.9.output.LayerNorm.bias', 'bert_model.encoder.layer.9.output.LayerNorm.weight', 'bert_model.encoder.layer.9.output.dense.bias', 'bert_model.encoder.layer.9.output.dense.weight']\n",
      "You should probably TRAIN this model on a down-stream task to be able to use it for predictions and inference.\n",
      "Some weights of the model checkpoint at facebook/dpr-question_encoder-single-nq-base were not used when initializing DPRQuestionEncoder: ['question_encoder.bert_model.pooler.dense.bias', 'question_encoder.bert_model.pooler.dense.weight']\n",
      "- This IS expected if you are initializing DPRQuestionEncoder from the checkpoint of a model trained on another task or with another architecture (e.g. initializing a BertForSequenceClassification model from a BertForPreTraining model).\n",
      "- This IS NOT expected if you are initializing DPRQuestionEncoder from the checkpoint of a model that you expect to be exactly identical (initializing a BertForSequenceClassification model from a BertForSequenceClassification model).\n"
     ]
    }
   ],
   "source": [
    "from transformers import DPRQuestionEncoder, DPRQuestionEncoderTokenizer\n",
    "\n",
    "ctx_model=DPRQuestionEncoder.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base')\n",
    "ctx_tokenizer=DPRQuestionEncoder.from_pretrained('facebook/dpr-ctx_encoder-single-nq-base')\n",
    "\n",
    "question_tokenizer = DPRQuestionEncoderTokenizer.from_pretrained('facebook/dpr-question_encoder-single-nq-base')\n",
    "question_model = DPRQuestionEncoder.from_pretrained('facebook/dpr-question_encoder-single-nq-base')\n",
    "\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\"\"\"title = [\"2024 Yılında Mobil Teknoloji Trendleri\"]\n",
    "keywords = [\"mobil teknoloji\", \"2024 trendleri\", \"akıllı telefon yenilikleri\", \"5G teknolojisi\", \"giyilebilir cihazlar\"]\n",
    "subheading = [\n",
    "    \"2024'te Akıllı Telefonlardaki Yenilikler\",\n",
    "    \"Giyilebilir Teknolojiler: Sağlık ve Fitness Trendleri\",\n",
    "    \"5G'nin Mobil Cihazlar Üzerindeki Etkisi\",\n",
    "    \"Mobil Güvenlikte Yeni Yaklaşımlar\"\n",
    "]\"\"\"\n"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "\n",
    "xb_tokens=ctx_tokenizer()\n"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "myenv",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.12.4"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 2
}