Spaces:
Build error
Build error
File size: 30,418 Bytes
b9ab29b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 |
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"#birleştirilcek dosyaların listesi \n",
"train_files=['C:\\\\gitProjects\\\\oak\\\\data\\\\train-00000-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00001-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00002-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00003-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00004-of-00007.parquet']\n",
"test_files=['C:\\\\gitProjects\\\\oak\\\\data\\\\train-00005-of-00007.parquet','C:\\\\gitProjects\\\\oak\\\\data\\\\train-00006-of-00007.parquet']\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [
{
"ename": "ImportError",
"evalue": "cannot import name 'Automodel' from 'transformers' (c:\\gitProjects\\deneme\\.venv\\Lib\\site-packages\\transformers\\__init__.py)",
"output_type": "error",
"traceback": [
"\u001b[1;31m---------------------------------------------------------------------------\u001b[0m",
"\u001b[1;31mImportError\u001b[0m Traceback (most recent call last)",
"Cell \u001b[1;32mIn[11], line 4\u001b[0m\n\u001b[0;32m 2\u001b[0m \u001b[38;5;28;01mimport\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m\n\u001b[0;32m 3\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mdatasets\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Dataset\n\u001b[1;32m----> 4\u001b[0m \u001b[38;5;28;01mfrom\u001b[39;00m \u001b[38;5;21;01mtransformers\u001b[39;00m \u001b[38;5;28;01mimport\u001b[39;00m Automodel \n",
"\u001b[1;31mImportError\u001b[0m: cannot import name 'Automodel' from 'transformers' (c:\\gitProjects\\deneme\\.venv\\Lib\\site-packages\\transformers\\__init__.py)"
]
}
],
"source": [
"import datasets\n",
"import transformers\n",
"from datasets import Dataset\n",
"from transformers import Automodel "
]
},
{
"cell_type": "code",
"execution_count": 7,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"Package Version\n",
"----------------- -----------\n",
"asttokens 2.4.1\n",
"colorama 0.4.6\n",
"comm 0.2.2\n",
"debugpy 1.8.2\n",
"decorator 5.1.1\n",
"executing 2.0.1\n",
"ipykernel 6.29.5\n",
"ipython 8.26.0\n",
"jedi 0.19.1\n",
"jupyter_client 8.6.2\n",
"jupyter_core 5.7.2\n",
"matplotlib-inline 0.1.7\n",
"nest-asyncio 1.6.0\n",
"packaging 24.1\n",
"parso 0.8.4\n",
"pip 24.2\n",
"platformdirs 4.2.2\n",
"prompt_toolkit 3.0.47\n",
"psutil 6.0.0\n",
"pure_eval 0.2.3\n",
"Pygments 2.18.0\n",
"python-dateutil 2.9.0.post0\n",
"pywin32 306\n",
"pyzmq 26.0.3\n",
"setuptools 65.5.0\n",
"six 1.16.0\n",
"stack-data 0.6.3\n",
"tornado 6.4.1\n",
"traitlets 5.14.3\n",
"typing_extensions 4.12.2\n",
"wcwidth 0.2.13\n",
"Collecting transformers\n",
" Downloading transformers-4.43.3-py3-none-any.whl.metadata (43 kB)\n",
"Collecting filelock (from transformers)\n",
" Using cached filelock-3.15.4-py3-none-any.whl.metadata (2.9 kB)\n",
"Collecting huggingface-hub<1.0,>=0.23.2 (from transformers)\n",
" Using cached huggingface_hub-0.24.5-py3-none-any.whl.metadata (13 kB)\n",
"Collecting numpy>=1.17 (from transformers)\n",
" Using cached numpy-2.0.1-cp311-cp311-win_amd64.whl.metadata (60 kB)\n",
"Requirement already satisfied: packaging>=20.0 in c:\\gitprojects\\deneme\\.venv\\lib\\site-packages (from transformers) (24.1)\n",
"Collecting pyyaml>=5.1 (from transformers)\n",
" Using cached PyYAML-6.0.1-cp311-cp311-win_amd64.whl.metadata (2.1 kB)\n",
"Collecting regex!=2019.12.17 (from transformers)\n",
" Downloading regex-2024.7.24-cp311-cp311-win_amd64.whl.metadata (41 kB)\n",
"Collecting requests (from transformers)\n",
" Using cached requests-2.32.3-py3-none-any.whl.metadata (4.6 kB)\n",
"Collecting safetensors>=0.4.1 (from transformers)\n",
" Downloading safetensors-0.4.3-cp311-none-win_amd64.whl.metadata (3.9 kB)\n",
"Collecting tokenizers<0.20,>=0.19 (from transformers)\n",
" Downloading tokenizers-0.19.1-cp311-none-win_amd64.whl.metadata (6.9 kB)\n",
"Collecting tqdm>=4.27 (from transformers)\n",
" Using cached tqdm-4.66.4-py3-none-any.whl.metadata (57 kB)\n",
"Collecting fsspec>=2023.5.0 (from huggingface-hub<1.0,>=0.23.2->transformers)\n",
" Using cached fsspec-2024.6.1-py3-none-any.whl.metadata (11 kB)\n",
"Requirement already satisfied: typing-extensions>=3.7.4.3 in c:\\gitprojects\\deneme\\.venv\\lib\\site-packages (from huggingface-hub<1.0,>=0.23.2->transformers) (4.12.2)\n",
"Requirement already satisfied: colorama in c:\\gitprojects\\deneme\\.venv\\lib\\site-packages (from tqdm>=4.27->transformers) (0.4.6)\n",
"Collecting charset-normalizer<4,>=2 (from requests->transformers)\n",
" Using cached charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl.metadata (34 kB)\n",
"Collecting idna<4,>=2.5 (from requests->transformers)\n",
" Using cached idna-3.7-py3-none-any.whl.metadata (9.9 kB)\n",
"Collecting urllib3<3,>=1.21.1 (from requests->transformers)\n",
" Using cached urllib3-2.2.2-py3-none-any.whl.metadata (6.4 kB)\n",
"Collecting certifi>=2017.4.17 (from requests->transformers)\n",
" Using cached certifi-2024.7.4-py3-none-any.whl.metadata (2.2 kB)\n",
"Downloading transformers-4.43.3-py3-none-any.whl (9.4 MB)\n",
" ---------------------------------------- 0.0/9.4 MB ? eta -:--:--\n",
" ---------------------------------------- 0.0/9.4 MB ? eta -:--:--\n",
" - -------------------------------------- 0.3/9.4 MB ? eta -:--:--\n",
" -- ------------------------------------- 0.5/9.4 MB 932.9 kB/s eta 0:00:10\n",
" -- ------------------------------------- 0.5/9.4 MB 932.9 kB/s eta 0:00:10\n",
" --- ------------------------------------ 0.8/9.4 MB 838.9 kB/s eta 0:00:11\n",
" ---- ----------------------------------- 1.0/9.4 MB 825.2 kB/s eta 0:00:11\n",
" ---- ----------------------------------- 1.0/9.4 MB 825.2 kB/s eta 0:00:11\n",
" ----- ---------------------------------- 1.3/9.4 MB 818.6 kB/s eta 0:00:10\n",
" ------ --------------------------------- 1.6/9.4 MB 822.8 kB/s eta 0:00:10\n",
" ------ --------------------------------- 1.6/9.4 MB 822.8 kB/s eta 0:00:10\n",
" ------- -------------------------------- 1.8/9.4 MB 838.9 kB/s eta 0:00:10\n",
" -------- ------------------------------- 2.1/9.4 MB 851.1 kB/s eta 0:00:09\n",
" -------- ------------------------------- 2.1/9.4 MB 851.1 kB/s eta 0:00:09\n",
" ---------- ----------------------------- 2.4/9.4 MB 860.5 kB/s eta 0:00:09\n",
" ----------- ---------------------------- 2.6/9.4 MB 878.0 kB/s eta 0:00:08\n",
" ------------ --------------------------- 2.9/9.4 MB 897.4 kB/s eta 0:00:08\n",
" ------------- -------------------------- 3.1/9.4 MB 913.7 kB/s eta 0:00:07\n",
" -------------- ------------------------- 3.4/9.4 MB 911.0 kB/s eta 0:00:07\n",
" -------------- ------------------------- 3.4/9.4 MB 911.0 kB/s eta 0:00:07\n",
" --------------- ------------------------ 3.7/9.4 MB 908.8 kB/s eta 0:00:07\n",
" ---------------- ----------------------- 3.9/9.4 MB 910.4 kB/s eta 0:00:07\n",
" ----------------- ---------------------- 4.2/9.4 MB 918.5 kB/s eta 0:00:06\n",
" ----------------- ---------------------- 4.2/9.4 MB 918.5 kB/s eta 0:00:06\n",
" ------------------ --------------------- 4.5/9.4 MB 916.2 kB/s eta 0:00:06\n",
" -------------------- ------------------- 4.7/9.4 MB 926.1 kB/s eta 0:00:06\n",
" --------------------- ------------------ 5.0/9.4 MB 935.1 kB/s eta 0:00:05\n",
" ---------------------- ----------------- 5.2/9.4 MB 940.5 kB/s eta 0:00:05\n",
" ----------------------- ---------------- 5.5/9.4 MB 950.7 kB/s eta 0:00:05\n",
" ------------------------ --------------- 5.8/9.4 MB 957.4 kB/s eta 0:00:04\n",
" ------------------------- -------------- 6.0/9.4 MB 966.3 kB/s eta 0:00:04\n",
" -------------------------- ------------- 6.3/9.4 MB 974.5 kB/s eta 0:00:04\n",
" --------------------------- ------------ 6.6/9.4 MB 984.6 kB/s eta 0:00:03\n",
" ---------------------------- ----------- 6.8/9.4 MB 991.6 kB/s eta 0:00:03\n",
" ------------------------------ --------- 7.1/9.4 MB 1.0 MB/s eta 0:00:03\n",
" ------------------------------- -------- 7.3/9.4 MB 1.0 MB/s eta 0:00:03\n",
" -------------------------------- ------- 7.6/9.4 MB 1.0 MB/s eta 0:00:02\n",
" --------------------------------- ------ 7.9/9.4 MB 1.0 MB/s eta 0:00:02\n",
" ---------------------------------- ----- 8.1/9.4 MB 1.0 MB/s eta 0:00:02\n",
" ----------------------------------- ---- 8.4/9.4 MB 1.0 MB/s eta 0:00:01\n",
" ------------------------------------ --- 8.7/9.4 MB 1.1 MB/s eta 0:00:01\n",
" ------------------------------------- -- 8.9/9.4 MB 1.1 MB/s eta 0:00:01\n",
" ---------------------------------------- 9.4/9.4 MB 1.1 MB/s eta 0:00:00\n",
"Using cached huggingface_hub-0.24.5-py3-none-any.whl (417 kB)\n",
"Using cached numpy-2.0.1-cp311-cp311-win_amd64.whl (16.6 MB)\n",
"Using cached PyYAML-6.0.1-cp311-cp311-win_amd64.whl (144 kB)\n",
"Downloading regex-2024.7.24-cp311-cp311-win_amd64.whl (269 kB)\n",
"Downloading safetensors-0.4.3-cp311-none-win_amd64.whl (287 kB)\n",
"Downloading tokenizers-0.19.1-cp311-none-win_amd64.whl (2.2 MB)\n",
" ---------------------------------------- 0.0/2.2 MB ? eta -:--:--\n",
" ---------------------------------------- 0.0/2.2 MB ? eta -:--:--\n",
" --------- ------------------------------ 0.5/2.2 MB 1.4 MB/s eta 0:00:02\n",
" -------------- ------------------------- 0.8/2.2 MB 1.3 MB/s eta 0:00:02\n",
" ------------------ --------------------- 1.0/2.2 MB 1.3 MB/s eta 0:00:01\n",
" ----------------------- ---------------- 1.3/2.2 MB 1.4 MB/s eta 0:00:01\n",
" ---------------------------- ----------- 1.6/2.2 MB 1.4 MB/s eta 0:00:01\n",
" --------------------------------- ------ 1.8/2.2 MB 1.4 MB/s eta 0:00:01\n",
" ---------------------------------------- 2.2/2.2 MB 1.4 MB/s eta 0:00:00\n",
"Using cached tqdm-4.66.4-py3-none-any.whl (78 kB)\n",
"Using cached filelock-3.15.4-py3-none-any.whl (16 kB)\n",
"Using cached requests-2.32.3-py3-none-any.whl (64 kB)\n",
"Using cached certifi-2024.7.4-py3-none-any.whl (162 kB)\n",
"Using cached charset_normalizer-3.3.2-cp311-cp311-win_amd64.whl (99 kB)\n",
"Using cached fsspec-2024.6.1-py3-none-any.whl (177 kB)\n",
"Using cached idna-3.7-py3-none-any.whl (66 kB)\n",
"Using cached urllib3-2.2.2-py3-none-any.whl (121 kB)\n",
"Installing collected packages: urllib3, tqdm, safetensors, regex, pyyaml, numpy, idna, fsspec, filelock, charset-normalizer, certifi, requests, huggingface-hub, tokenizers, transformers\n",
"Successfully installed certifi-2024.7.4 charset-normalizer-3.3.2 filelock-3.15.4 fsspec-2024.6.1 huggingface-hub-0.24.5 idna-3.7 numpy-2.0.1 pyyaml-6.0.1 regex-2024.7.24 requests-2.32.3 safetensors-0.4.3 tokenizers-0.19.1 tqdm-4.66.4 transformers-4.43.3 urllib3-2.2.2\n"
]
}
],
"source": [
"!pip list dataset\n",
"!pip install transformers"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#dosyaları yükleyin ve birleştirin\n",
"train_dfs=[pd.read_parquet(file) for file in train_files]\n",
"test_dfs=[pd.read_parquet(file) for file in test_files]"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#parque dosyalarının birleştirilmesi\n",
"train_df=pd.concat(train_dfs,ignore_index=True)\n",
"test_df=pd.concat(test_dfs,ignore_index=True)\n",
"\n",
"print(train_df.head())\n",
"print(train_df.head())\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#train ve test dosyaları oluşturma \n",
"train_df.to_parquet('C:\\\\gitProjects\\\\train_Egitim\\\\merged_train.parquet')\n",
"test_df.to_parquet('C:\\\\gitProjects\\\\test_Egitim\\\\merged_train.parquet')"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#test ve train yollarını belirleme ve test, traindeki önemli sütunları alma\n",
"train_file_path=('C:\\\\gitProjects\\\\train_Egitim\\\\merged_train.parquet')\n",
"test_file_path=('C:\\\\gitProjects\\\\test_Egitim\\\\merged_train.parquet')\n",
"\n",
"train_df=pd.read_parquet(train_file_path,columns=['Prompt_ID','Prompt','Response','Category','Subcategory','Prompt_token_length'])\n",
"test_df=pd.read_parquet(test_file_path,columns=['Prompt_ID','Prompt','Response','Category','Subcategory','Prompt_token_length'])\n",
"\n",
"print(train_df.head())\n",
"print(test_df.head())"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"#verileri bart ile eğitme burada koleksiyon içerisindeki veriler tanımlanmalı \n",
"# Load model directly\n",
"from transformers import AutoModel,AutoTokenizer\n",
"from transformers import (WEIGHTS_NAME, BertConfig,\n",
" BertForQuestionAnswering, BertTokenizer)\n",
"from torch.utils.data import DataLoader, SequentialSampler, TensorDataset\n",
"\n",
"#from utils import (get_answer, input_to_squad_example,squad_examples_to_features, to_list)\n",
"import collections\n",
"# Load model directly\n",
"from transformers import AutoTokenizer, AutoModelForSeq2SeqLM\n",
"\n",
"tokenizer = AutoTokenizer.from_pretrained(\"philschmid/bart-large-cnn-samsum\")\n",
"model = AutoModelForSeq2SeqLM.from_pretrained(\"philschmid/bart-large-cnn-samsum\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pymongo import MongoClient\n",
"import pandas as pd\n",
"\n",
"# MongoDB connection settings\n",
"\n",
"def get_mongodb(database_name='yeniDatabase', collection_name='train', host='localhost', port=27017):\n",
" \"\"\"\n",
" MongoDB connection and collection selection\n",
" \"\"\"\n",
" client = MongoClient(f'mongodb://{host}:{port}/')\n",
" db = client[database_name]\n",
" collection = db[collection_name]\n",
" return collection\n",
"\n",
"# Function to load dataset into MongoDB\n",
"def dataset_read():\n",
" train_file_path = ('C:\\\\gitProjects\\\\train_Egitim\\\\merged_train.parquet')\n",
" data = pd.read_parquet(train_file_path, columns=['Prompt_ID', 'Prompt', 'Response', 'Category', 'Subcategory', 'Prompt_token_length'])\n",
" data_dict = data.to_dict(\"records\")\n",
"\n",
" # Get the MongoDB collection\n",
" source_collection = get_mongodb(database_name='yeniDatabase', collection_name='train') # Collection for translation\n",
"\n",
" # Insert data into MongoDB\n",
" source_collection.insert_many(data_dict)\n",
"\n",
" print(\"Data successfully loaded into MongoDB.\")\n",
" return source_collection\n",
"\n",
"# Call the function to load the dataset into MongoDB\n",
"source_collection = dataset_read()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Test ve train verilerini mongodb ye yükleme"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"def get_mongodb(database_name='yeniDatabase', collection_name='test', mongo_url='mongodb://localhost:27017/'):\n",
" \"\"\"\n",
" MongoDB connection and collection selection\n",
" \"\"\"\n",
" client = MongoClient(mongo_url)\n",
" db = client[database_name]\n",
" collection = db[collection_name]\n",
" return collection\n",
"\n",
"# Function to load dataset into MongoDB\n",
"def dataset_read():\n",
" train_file_path = ('C:\\\\gitProjects\\\\test_Egitim\\\\merged_train.parquet')\n",
" data = pd.read_parquet(train_file_path, columns=['Prompt_ID', 'Prompt', 'Response', 'Category', 'Subcategory', 'Prompt_token_length'])\n",
" data_dict = data.to_dict(\"records\")\n",
"\n",
" # Get the MongoDB collection\n",
" source_collection = get_mongodb(database_name='yeniDatabase', collection_name='test') # Collection for translation\n",
"\n",
" # Insert data into MongoDB\n",
" source_collection.insert_many(data_dict)\n",
"\n",
" print(\"Data successfully loaded into MongoDB.\")\n",
" return source_collection\n",
"\n",
"# Call the function to load the dataset into MongoDB\n",
"source_collection = dataset_read()"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"Model eğitimi \n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"# uygulama için kullanılcak olan özelliklerin tanımlanması\n",
"from transformers import BertTokenizer,BertForQuestionAnswering,BertConfig\n",
"class QA:\n",
" def __init__(self,model_path: str):\n",
" self.max_seq_length = 384 #max seq\n",
" self.doc_stride = 128 #stride \n",
" self.do_lower_case = False\n",
" self.max_query_length = 30\n",
" self.n_best_size = 3\n",
" self.max_answer_length = 30\n",
" self.version_2_with_negative = False\n",
" #modelin yüklenmesi\n",
" self.model, self.tokenizer = self.load_model(model_path)\n",
" #hangi işlmecinin kullanıldığının belirlenmesi\n",
" if torch.cuda.is_available():\n",
" self.device = 'cuda'\n",
" else:\n",
" self.device = 'cpu'\n",
" self.model.to(self.device)\n",
" self.model.eval()\n",
" \n",
" # This function is used to load the model\n",
" def load_model(self,model_path: str,do_lower_case=False):\n",
" config = BertConfig.from_pretrained(model_path + \"C:\\\\gitProjects\\\\train_Egitim\")\n",
" tokenizer = BertTokenizer.from_pretrained(model_path, do_lower_case=do_lower_case)\n",
" model = BertForQuestionAnswering.from_pretrained(model_path, from_tf=False, config=config)\n",
" return model, tokenizer\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pymongo import MongoClient\n",
"\n",
"def get_mongodb():\n",
" # MongoDB bağlantı bilgilerini döndürecek şekilde tanımlanmalıdır.\n",
" return 'mongodb://localhost:27017/', 'yeniDatabase', 'test'\n",
"\n",
"def get_average_prompt_token_length():\n",
" # MongoDB bağlantı bilgilerini alma\n",
" mongo_url, db_name, collection_name = get_mongodb()\n",
"\n",
" # MongoDB'ye bağlanma\n",
" client = MongoClient(mongo_url)\n",
" db = client[db_name]\n",
" collection = db[collection_name]\n",
"\n",
" # Tüm dökümanları çekme ve 'prompt_token_length' alanını alma\n",
" docs = collection.find({}, {'Prompt_token_length': 1})\n",
"\n",
" # 'prompt_token_length' değerlerini toplama ve sayma\n",
" total_length = 0\n",
" count = 0\n",
"\n",
" for doc in docs:\n",
" if 'Prompt_token_length' in doc:\n",
" total_length += doc['Prompt_token_length']\n",
" count += 1\n",
" \n",
" # Ortalama hesaplama\n",
" if count > 0:\n",
" average_length = total_length / count\n",
" else:\n",
" average_length = 0 # Eğer 'prompt_token_length' alanı olan döküman yoksa\n",
"\n",
" return int(average_length)\n",
"\n",
"# Ortalama prompt token uzunluğunu al ve yazdır\n",
"average_length = get_average_prompt_token_length()\n",
"print(f\"Ortalama prompt token uzunluğu: {average_length}\")\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from pymongo import MongoClient\n",
"from transformers import BertTokenizer\n",
"\n",
"#getmongodb oluştumak yerine içeriği değiştirilmeli \n",
"def get_mongodb():\n",
" # MongoDB bağlantı bilgilerini döndürecek şekilde tanımlanmalıdır.\n",
" return 'mongodb://localhost:27017/', 'yeniDatabase', 'train'\n",
"\n",
"def get_input_texts():\n",
" # MongoDB bağlantı bilgilerini alma\n",
" mongo_url, db_name, collection_name = get_mongodb()\n",
"\n",
" # MongoDB'ye bağlanma\n",
" client = MongoClient(mongo_url)\n",
" db = client[db_name]\n",
" collection = db[collection_name]\n",
" \n",
" #input texleri mongodb üzerinde 'Prompt' lara denk gelir.\n",
"\n",
" # Sorguyu tanımlama\n",
" query = {\"Prompt\": {\"$exists\": True}}\n",
"\n",
" # Sorguyu çalıştırma ve dökümanları çekme\n",
" cursor = collection.find(query, {\"Prompt\": 1, \"_id\": 0}) # 'input_text' alanını almak için \"_id\": 0 ekleyin\n",
"\n",
" # Cursor'ı döküman listesine dönüştürme\n",
" input_texts_from_db = list(cursor)\n",
"\n",
" # Input text'leri döndürme\n",
" return input_texts_from_db\n",
"\n",
"input_texts_from_db= get_input_texts()\n",
"# Input text'leri al ve yazdır\n",
"\n",
"#tokenizer ı yükle\n",
"tokenizer=BertTokenizer.from_pretrained('bert-base-uncased')\n",
" \n",
"#encode etmek için gerekli olan bilgiler \n",
"input_texts=[doc[\"Prompt\"] for doc in input_texts_from_db ]\n",
"\n",
"#encoding işleminde inputlar \n",
"\n",
"# Tokenize the input texts\n",
"encoded_inputs = tokenizer.batch_encode_plus(\n",
" input_texts,\n",
" padding=True,\n",
" truncation=True,\n",
" max_length=100,\n",
" return_attention_mask=True,\n",
" return_tensors='pt'\n",
")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"print(f\"encoded_inputs:{encoded_inputs}\")"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n",
"#maskeleme yönetmiyle eğitim\n",
"# Define the number of epochs and learning rate\n",
"num_epochs = 3\n",
"learning_rate = 1e-4\n",
"optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate)\n",
"\n",
"#Iterate over the epochs\n",
"for epoch in range(num_epochs):\n",
" total_loss = 0\n",
" for input_ids, attention_mask, labels in encoded_inputs:\n",
" #reset gradients\n",
" optimizer.zero_grad()\n",
" #forward pass \n",
" outputs = model(input_ids=input_ids, attention_mask=attention_mask, labels=labels)\n",
" loss = outputs.loss\n",
" #backward pass \n",
" loss.backward()\n",
" #update optimizer \n",
" optimizer.step()\n",
" #accumulate total loss\n",
" total_loss += loss.item()\n",
" #calculate average loss\n",
" average_loss = total_loss / len(encoded_inputs)\n",
" #print the loss for current epoch\n",
" print(f\"Epoch {epoch+1} - Loss: {average_loss:.4f}\")\n",
"\n",
" #tüm bu verileri tutan bir \"batch_of_attention_masks\" verisini tanımlamam gerek"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from torch.utils.data import DataLoader,TensorDataset\n",
"import torch\n",
"from transformers import BertTokenizer\n",
"\n",
"#hdef değerlerle karşılaştırma yapabilmek için ve doğruluğu ölçmek için\n",
"\n",
"# Assuming you have tokenized input texts and labels\n",
"#attetion mask bert dilinde modelin sadece gerçek tokenler üzerinde çalışmasını sağlar.\n",
"input_ids = encoded_inputs['input_ids'] # Replace with your tokenized input texts\n",
"attention_masks = encoded_inputs['attention_mask']\n",
"\n",
"\n",
"labels = torch.tensor([1]*len(input_ids))\n",
"\n",
"# Create a TensorDataset\n",
"dataset = TensorDataset(input_ids, attention_masks, labels)\n",
"\n",
"batch_size=10000\n",
"# Create a data loader\n",
"data_loader = DataLoader(dataset, batch_size=batch_size, shuffle=True)\n",
"\n",
"for batch in data_loader:\n",
" input_ids,attention_masks,labels\n",
" print(f\"ınput ıds :{input_texts}\")\n",
" print(f\"attetion masks: {attention_masks}\")\n",
" print(f\"labels:{labels}\")\n",
" break"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
" # This function performs the prediction and return the reponse to the flask app\n",
" # This function performs the prediction and return the reponse to the flask app\n",
"RawResult = collection.namedtuple(\"RawResult\",[\"unique_id\", \"start_logits\", \"end_logits\"])\n",
"\n",
"def predict(self,passage :str,question :str): \n",
" example = input_to_squad_example(passage,question) \n",
" features = squad_examples_to_features(example,self.tokenizer,self.max_seq_length,self.doc_stride,self.max_query_length) \n",
" all_input_ids = torch.tensor([f.input_ids for f in features], dtype=torch.long)\n",
" all_input_mask = torch.tensor([f.input_mask for f in features], dtype=torch.long)\n",
" all_segment_ids = torch.tensor([f.segment_ids for f in features], dtype=torch.long)\n",
" all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long)\n",
" dataset = TensorDataset(all_input_ids, all_input_mask, all_segment_ids,\n",
" all_example_index)\n",
" eval_sampler = SequentialSampler(dataset)\n",
" eval_dataloader = DataLoader(dataset, sampler=eval_sampler, batch_size=1)\n",
" \n",
" all_results = []\n",
" for batch in eval_dataloader:\n",
" batch = tuple(t.to(self.device) for t in batch)\n",
" with torch.no_grad():\n",
" inputs = {'input_ids': batch[0],\n",
" 'attention_mask': batch[1],\n",
" 'token_type_ids': batch[2] \n",
" } \n",
" example_indices = batch[3] \n",
" outputs = self.model(**inputs)\n",
" \n",
" for i, example_index in enumerate(example_indices):\n",
" eval_feature = features[example_index.item()]\n",
" unique_id = int(eval_feature.unique_id)\n",
" result = RawResult(unique_id = unique_id,\n",
" start_logits = to_list(outputs[0][i]),\n",
" end_logits = to_list(outputs[1][i]))\n",
" all_results.append(result)\n",
" \n",
" answer = get_answer(example,features,all_results,self.n_best_size,self.max_answer_length,self.do_lower_case)\n",
" \n",
" return answer"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"tokenizer.batch_encode_plus()\n",
"torch.utils.data.DataLoader\n",
"input_ids = torch.tensor(batch_of_tokenized_input_texts)\n",
"attention_mask = torch.tensor(batch_of_attention_masks)\n",
"labels = torch.tensor(batch_of_labels)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"model.save_pretrained(output_model_path)\n",
"tokenizer.save_pretrained(output_model_path)"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"from app import train_model_route\n",
"\n",
"#ön yüzle ilişkilendirme\n",
"\n",
"train_model_route\n",
"\n",
"#title category ile ilişkilendirlecek\n",
"\n",
"\n",
"#subheadingler subcategroy ile ilişkilendirieck\n",
"\n",
"#prompt token uzunlukları kontrol edilerek bütün tokenlerin aynı uzunlukta olması sağlanmalıdır.\n",
"\n"
]
},
{
"cell_type": "code",
"execution_count": null,
"metadata": {},
"outputs": [],
"source": [
"\n"
]
}
],
"metadata": {
"kernelspec": {
"display_name": "myenv",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.11.9"
}
},
"nbformat": 4,
"nbformat_minor": 2
}
|