File size: 7,068 Bytes
6a059b5 82b4cf3 6a059b5 7224c58 6a059b5 7224c58 6a059b5 82b4cf3 6a059b5 82b4cf3 6a059b5 82b4cf3 6a059b5 2929986 6a059b5 65082b9 6a059b5 82b4cf3 6a059b5 5e11b77 6a059b5 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import time
import uuid
import cv2
import gradio as gr
import numpy as np
import spaces
import supervision as sv
import torch
from transformers import AutoModelForZeroShotObjectDetection, AutoProcessor
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
processor = AutoProcessor.from_pretrained("omlab/omdet-turbo-swin-tiny-hf")
model = AutoModelForZeroShotObjectDetection.from_pretrained(
"omlab/omdet-turbo-swin-tiny-hf"
).to(device)
css = """
.feedback textarea {font-size: 24px !important}
"""
global classes
global detections
global labels
global threshold
classes = "person, bike, car"
detections = None
labels = None
threshold = 0.2
BOUNDING_BOX_ANNOTATOR = sv.BoundingBoxAnnotator()
MASK_ANNOTATOR = sv.MaskAnnotator()
LABEL_ANNOTATOR = sv.LabelAnnotator()
SUBSAMPLE = 2
def annotate_image(input_image, detections, labels) -> np.ndarray:
output_image = MASK_ANNOTATOR.annotate(input_image, detections)
output_image = BOUNDING_BOX_ANNOTATOR.annotate(output_image, detections)
output_image = LABEL_ANNOTATOR.annotate(output_image, detections, labels=labels)
return output_image
@spaces.GPU
def process_video(
input_video,
confidence_threshold,
classes_new,
progress=gr.Progress(track_tqdm=True),
):
global detections
global labels
global classes
global threshold
classes = classes_new
threshold = confidence_threshold
result_file_name = f"output_{uuid.uuid4()}.mp4"
cap = cv2.VideoCapture(input_video)
video_codec = cv2.VideoWriter_fourcc(*"mp4v") # type: ignore
fps = int(cap.get(cv2.CAP_PROP_FPS))
width = int(cap.get(cv2.CAP_PROP_FRAME_WIDTH))
height = int(cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
desired_fps = fps // SUBSAMPLE
iterating, frame = cap.read()
segment_file = cv2.VideoWriter(
result_file_name, video_codec, desired_fps, (width, height)
) # type: ignore
batch = []
frames = []
predict_index = []
n_frames = 0
while iterating:
# frame = cv2.resize(frame, (0, 0), fx=0.5, fy=0.5)
if n_frames % SUBSAMPLE == 0:
predict_index.append(len(frames))
batch.append(frame)
frames.append(frame)
if len(batch) == desired_fps:
classes_list = classes.strip(" ").split(",")
results, fps = query(batch, classes_list, threshold, (width, height))
for i in range(len(frames)):
if i in predict_index:
batch_index = predict_index.index(i)
detections = sv.Detections(
xyxy=results[batch_index]["boxes"].cpu().detach().numpy(),
confidence=results[batch_index]["scores"]
.cpu()
.detach()
.numpy(),
class_id=np.array(
[
classes_list.index(results_class)
for results_class in results[batch_index]["classes"]
]
),
data={"class_name": results[batch_index]["classes"]},
)
labels = results[batch_index]["classes"]
frame = annotate_image(
input_image=frames[i],
detections=detections,
labels=labels,
)
segment_file.write(frame)
segment_file.release()
yield (
result_file_name,
gr.Markdown(
f'<h3 style="text-align: center;">Model inference FPS (batched): {fps*len(batch):.2f}</h3>',
visible=True,
),
)
result_file_name = f"output_{uuid.uuid4()}.mp4"
segment_file = cv2.VideoWriter(
result_file_name, video_codec, desired_fps, (width, height)
) # type: ignore
batch = []
frames = []
predict_index = []
iterating, frame = cap.read()
n_frames += 1
def query(frame, classes, confidence_threshold, size=(640, 480)):
inputs = processor(
images=frame, text=[classes] * len(frame), return_tensors="pt"
).to(device)
with torch.no_grad():
start = time.time()
outputs = model(**inputs)
fps = 1 / (time.time() - start)
target_sizes = torch.tensor([size[::-1]] * len(frame))
results = processor.post_process_grounded_object_detection(
outputs=outputs,
classes=[classes] * len(frame),
score_threshold=confidence_threshold,
target_sizes=target_sizes,
)
return results, fps
def set_classes(classes_input):
global classes
classes = classes_input
def set_confidence_threshold(confidence_threshold_input):
global threshold
threshold = confidence_threshold_input
with gr.Blocks(theme=gr.themes.Soft(), css=css) as demo:
gr.Markdown("## Real Time Open Vocabulary Object Detection with Omdet-Turbo")
gr.Markdown(
"""
This is a demo for real-time open vocabulary object detection using OmDet-Turbo.<br>
It runs on ZeroGPU which captures GPU every first time you infer.<br>
This combined with video processing time means that the demo inference time is slower than the model's actual inference time.<br>
The actual model average inference FPS is displayed under the processed video after inference.
"""
)
gr.Markdown(
"Simply upload a video or try the examples below π, and press run. You can then change the object detected live in the text box! You also play with the confidence threshold and see how it impacts the objects detected in real time."
)
with gr.Row():
with gr.Column():
input_video = gr.Video(label="Input Video")
with gr.Column():
output_video = gr.Video(label="Output Video", streaming=True, autoplay=True)
actual_fps = gr.Markdown("", visible=False)
with gr.Row():
classes = gr.Textbox(
"person, cat, dog",
label="Objects to detect. Change this as you like and press enter!",
elem_classes="feedback",
scale=3,
)
conf = gr.Slider(
label="Confidence Threshold",
minimum=0.1,
maximum=1.0,
value=0.2,
step=0.05,
)
with gr.Row():
submit = gr.Button(variant="primary")
example = gr.Examples(
examples=[
["./newyorkstreets_small.mp4", 0.3, "person, car, shoe"],
],
inputs=[input_video, conf, classes],
outputs=[output_video, actual_fps],
)
classes.submit(set_classes, classes)
conf.change(set_confidence_threshold, conf)
submit.click(
fn=process_video,
inputs=[input_video, conf, classes],
outputs=[output_video, actual_fps],
)
if __name__ == "__main__":
demo.launch(show_error=True)
|