Spaces:
Running
Running
File size: 10,705 Bytes
ab46b5d 58e2c34 8de05ba 4e21102 58e2c34 4e21102 ab46b5d 4e21102 0b6be65 4e21102 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 0b6be65 8de05ba 4e21102 8de05ba 0b6be65 58e2c34 0b6be65 4e21102 0b6be65 4e21102 0b6be65 58e2c34 0b6be65 7a50f12 4e21102 7a50f12 0b6be65 58e2c34 0b6be65 58e2c34 0b6be65 4e21102 0b6be65 ab46b5d 4e21102 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
import gradio as gr
import pandas as pd
from io import BytesIO
import chardet
def detect_encoding(file_bytes):
"""Detect the encoding of a file using chardet"""
# Only use a sample of the file for detection to improve performance
result = chardet.detect(file_bytes[:10000])
return result['encoding']
def convert_file(input_file, conversion_type, encoding_option):
try:
# Check if a file was uploaded
if input_file is None:
return None, "Please upload a file."
# Determine if input_file is a file-like object or a file path string
try:
# Try reading from file-like object
file_bytes = input_file.read()
file_name = input_file.name
except AttributeError:
# If there's an AttributeError, treat input_file as a file path
file_name = input_file
with open(file_name, "rb") as f:
file_bytes = f.read()
file_extension = file_name.lower().split('.')[-1]
df = None
output_file = None
converted_format = None
# Handle encoding for CSV files
if encoding_option == "Auto-detect":
encoding = detect_encoding(file_bytes)
else:
encoding = encoding_option
# Conversion: CSV to Parquet
if conversion_type == "CSV to Parquet":
if file_extension != "csv":
return None, "For CSV to Parquet conversion, please upload a CSV file."
# Try with the selected/detected encoding
try:
df = pd.read_csv(BytesIO(file_bytes), encoding=encoding)
except UnicodeDecodeError:
# If auto-detection fails, try a few common encodings
common_encodings = ['latin1', 'iso-8859-1', 'cp1252']
for enc in common_encodings:
try:
df = pd.read_csv(BytesIO(file_bytes), encoding=enc)
encoding = enc # Update the successful encoding
break
except UnicodeDecodeError:
continue
if df is None:
return None, f"Failed to decode the CSV file. Auto-detected encoding was '{encoding}'. Please try selecting a specific encoding."
output_file = "output.parquet"
df.to_parquet(output_file, index=False)
converted_format = "Parquet"
# Conversion: Parquet to CSV
elif conversion_type == "Parquet to CSV":
if file_extension != "parquet":
return None, "For Parquet to CSV conversion, please upload a Parquet file."
df = pd.read_parquet(BytesIO(file_bytes))
output_file = "output.csv"
df.to_csv(output_file, index=False, encoding=encoding)
converted_format = "CSV"
else:
return None, "Invalid conversion type selected."
# Generate a preview of the top 10 rows
preview = df.head(10).to_string(index=False)
info_message = (
f"Input file: {file_name}\n"
f"Converted file format: {converted_format}\n"
f"Encoding used: {encoding}\n"
f"Total rows: {len(df)}\n"
f"Total columns: {len(df.columns)}\n\n"
f"Preview (Top 10 Rows):\n{preview}"
)
return output_file, info_message
except Exception as e:
return None, f"Error during conversion: {str(e)}"
# Enhanced custom CSS for a more visually appealing interface
custom_css = """
body {
background: linear-gradient(135deg, #f5f7fa 0%, #c3cfe2 100%);
font-family: 'Poppins', 'Segoe UI', Tahoma, Geneva, Verdana, sans-serif;
}
.gradio-container {
max-width: 950px;
margin: 40px auto;
padding: 30px;
background-color: #ffffff;
border-radius: 16px;
box-shadow: 0 10px 25px rgba(0,0,0,0.1);
}
h1 {
color: #3a4149;
font-size: 2.5rem;
text-align: center;
margin-bottom: 5px;
font-weight: 600;
}
h2 {
color: #5a6570;
font-size: 1.2rem;
text-align: center;
margin-bottom: 25px;
font-weight: 400;
}
.header-icon {
font-size: 3rem;
text-align: center;
margin-bottom: 10px;
color: #4285f4;
}
.instruction-box {
background-color: #f8f9fa;
border-left: 4px solid #4285f4;
padding: 15px;
margin-bottom: 25px;
border-radius: 6px;
}
.instruction-step {
margin: 8px 0;
padding-left: 10px;
}
.file-box {
border: 2px dashed #ddd;
border-radius: 12px;
padding: 20px;
transition: all 0.3s ease;
}
.file-box:hover {
border-color: #4285f4;
box-shadow: 0 5px 15px rgba(66, 133, 244, 0.15);
}
.conversion-radio label {
padding: 10px 15px;
margin: 5px;
border-radius: 8px;
border: 1px solid #eaeaea;
transition: all 0.2s ease;
}
.conversion-radio input:checked + label {
background-color: #e8f0fe;
border-color: #4285f4;
color: #4285f4;
}
.convert-button {
background: linear-gradient(to right, #4285f4, #34a853) !important;
color: white !important;
border: none !important;
padding: 12px 25px !important;
font-size: 16px !important;
font-weight: 500 !important;
border-radius: 30px !important;
cursor: pointer;
margin: 20px auto !important;
display: block !important;
box-shadow: 0 4px 12px rgba(66, 133, 244, 0.25) !important;
}
.convert-button:hover {
box-shadow: 0 6px 16px rgba(66, 133, 244, 0.4) !important;
transform: translateY(-2px);
}
.footer {
text-align: center;
margin-top: 30px;
color: #70757a;
font-size: 0.9rem;
}
.preview-box {
background-color: #f8f9fa;
border-radius: 8px;
padding: 15px;
font-family: monospace;
white-space: pre-wrap;
max-height: 400px;
overflow-y: auto;
}
.info-tag {
display: inline-block;
background-color: #e8f0fe;
color: #4285f4;
padding: 4px 10px;
border-radius: 20px;
font-size: 0.85rem;
margin-right: 8px;
margin-bottom: 8px;
}
.divider {
height: 1px;
background: linear-gradient(to right, transparent, #ddd, transparent);
margin: 25px 0;
}
.error-message {
color: #d93025;
background-color: #fce8e6;
padding: 10px;
border-radius: 8px;
margin-top: 10px;
font-size: 0.9rem;
}
.success-message {
color: #188038;
background-color: #e6f4ea;
padding: 10px;
border-radius: 8px;
margin-top: 10px;
font-size: 0.9rem;
}
"""
with gr.Blocks(css=custom_css, title="DataFormat Converter") as demo:
gr.HTML('<div class="header-icon">📊</div>')
gr.Markdown("# DataFormat Converter")
gr.Markdown("## Seamlessly convert between CSV and Parquet formats with just a few clicks")
gr.HTML('<div class="divider"></div>')
with gr.Row():
with gr.Column():
gr.HTML("""
<div class="instruction-box">
<h3>How It Works</h3>
<div class="instruction-step">1. Upload your CSV or Parquet file</div>
<div class="instruction-step">2. Select the conversion direction</div>
<div class="instruction-step">3. Choose encoding (or leave as auto-detect)</div>
<div class="instruction-step">4. Click "Convert" and download your transformed file</div>
</div>
<div class="info-section">
<div class="info-tag">Fast Conversion</div>
<div class="info-tag">Data Preview</div>
<div class="info-tag">Multi-Encoding Support</div>
<div class="info-tag">Maintains Structure</div>
</div>
""")
gr.HTML("""
<div style="margin-top: 25px;">
<h3>Why Convert?</h3>
<p>Parquet files offer significant advantages for data storage and analysis:</p>
<ul>
<li>Smaller file size (up to 87% reduction)</li>
<li>Faster query performance</li>
<li>Column-oriented storage</li>
<li>Better compression</li>
</ul>
<p>CSV files are useful for:</p>
<ul>
<li>Universal compatibility</li>
<li>Human readability</li>
<li>Simple integration with many tools</li>
</ul>
</div>
""")
with gr.Column():
# Replace gr.Box with a div using gr.HTML for the file-box styling
gr.HTML('<div class="file-box">')
input_file = gr.File(label="Upload Your File")
conversion_type = gr.Radio(
choices=["CSV to Parquet", "Parquet to CSV"],
label="Select Conversion Type",
value="CSV to Parquet",
elem_classes=["conversion-radio"]
)
encoding_option = gr.Dropdown(
choices=["Auto-detect", "utf-8", "latin1", "iso-8859-1", "cp1252", "utf-16"],
value="Auto-detect",
label="Select CSV Encoding"
)
convert_button = gr.Button("Convert Now", elem_classes=["convert-button"])
gr.HTML('</div>') # Close the file-box div
with gr.Accordion("Conversion Results", open=False):
output_file = gr.File(label="Download Converted File")
with gr.Accordion("Data Preview", open=True):
preview = gr.Textbox(
label="File Information and Preview",
lines=15,
elem_classes=["preview-box"]
)
gr.HTML('<div class="divider"></div>')
gr.HTML("""
<div class="footer">
<p>DataFormat Converter © 2025 | Built with Gradio | An efficient tool for data professionals</p>
</div>
""")
convert_button.click(
fn=convert_file,
inputs=[input_file, conversion_type, encoding_option],
outputs=[output_file, preview]
)
# Add dependency handling to show/hide encoding options based on conversion type
def update_encoding_visibility(conversion_type):
if conversion_type == "CSV to Parquet":
return gr.update(visible=True)
else:
return gr.update(visible=False)
conversion_type.change(
fn=update_encoding_visibility,
inputs=conversion_type,
outputs=encoding_option
)
if __name__ == "__main__":
demo.launch() |