Spaces:
Runtime error
Runtime error
File size: 13,418 Bytes
7f2690b |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 |
import torch
import torchaudio
import torch.nn.functional as F
import numpy as np
from scipy.signal import get_window
import librosa.util as librosa_util
from librosa.util import pad_center, tiny
from librosa.filters import mel as librosa_mel_fn
import io
# spectrogram to mel
class STFT(torch.nn.Module):
"""adapted from Prem Seetharaman's https://github.com/pseeth/pytorch-stft"""
def __init__(self, filter_length, hop_length, win_length, window="hann"):
super(STFT, self).__init__()
self.filter_length = filter_length
self.hop_length = hop_length
self.win_length = win_length
self.window = window
self.forward_transform = None
scale = self.filter_length / self.hop_length
fourier_basis = np.fft.fft(np.eye(self.filter_length))
cutoff = int((self.filter_length / 2 + 1))
fourier_basis = np.vstack(
[np.real(fourier_basis[:cutoff, :]), np.imag(fourier_basis[:cutoff, :])]
)
forward_basis = torch.FloatTensor(fourier_basis[:, None, :])
inverse_basis = torch.FloatTensor(
np.linalg.pinv(scale * fourier_basis).T[:, None, :]
)
if window is not None:
assert filter_length >= win_length
# get window and zero center pad it to filter_length
fft_window = get_window(window, win_length, fftbins=True)
fft_window = pad_center(fft_window, filter_length)
fft_window = torch.from_numpy(fft_window).float()
# window the bases
forward_basis *= fft_window
inverse_basis *= fft_window
self.register_buffer("forward_basis", forward_basis.float())
self.register_buffer("inverse_basis", inverse_basis.float())
def transform(self, input_data):
num_batches = input_data.size(0)
num_samples = input_data.size(1)
self.num_samples = num_samples
# similar to librosa, reflect-pad the input
input_data = input_data.view(num_batches, 1, num_samples)
input_data = F.pad(
input_data.unsqueeze(1),
(int(self.filter_length / 2), int(self.filter_length / 2), 0, 0),
mode="reflect",
)
input_data = input_data.squeeze(1)
forward_transform = F.conv1d(
input_data,
torch.autograd.Variable(self.forward_basis, requires_grad=False),
stride=self.hop_length,
padding=0,
).cpu()
cutoff = int((self.filter_length / 2) + 1)
real_part = forward_transform[:, :cutoff, :]
imag_part = forward_transform[:, cutoff:, :]
magnitude = torch.sqrt(real_part**2 + imag_part**2)
phase = torch.autograd.Variable(torch.atan2(imag_part.data, real_part.data))
return magnitude, phase
def inverse(self, magnitude, phase):
recombine_magnitude_phase = torch.cat(
[magnitude * torch.cos(phase), magnitude * torch.sin(phase)], dim=1
)
inverse_transform = F.conv_transpose1d(
recombine_magnitude_phase,
torch.autograd.Variable(self.inverse_basis, requires_grad=False),
stride=self.hop_length,
padding=0,
)
if self.window is not None:
window_sum = window_sumsquare(
self.window,
magnitude.size(-1),
hop_length=self.hop_length,
win_length=self.win_length,
n_fft=self.filter_length,
dtype=np.float32,
)
# remove modulation effects
approx_nonzero_indices = torch.from_numpy(
np.where(window_sum > tiny(window_sum))[0]
)
window_sum = torch.autograd.Variable(
torch.from_numpy(window_sum), requires_grad=False
)
window_sum = window_sum
inverse_transform[:, :, approx_nonzero_indices] /= window_sum[
approx_nonzero_indices
]
# scale by hop ratio
inverse_transform *= float(self.filter_length) / self.hop_length
inverse_transform = inverse_transform[:, :, int(self.filter_length / 2) :]
inverse_transform = inverse_transform[:, :, : -int(self.filter_length / 2) :]
return inverse_transform
def forward(self, input_data):
self.magnitude, self.phase = self.transform(input_data)
reconstruction = self.inverse(self.magnitude, self.phase)
return reconstruction
def window_sumsquare(
window,
n_frames,
hop_length,
win_length,
n_fft,
dtype=np.float32,
norm=None,
):
"""
# from librosa 0.6
Compute the sum-square envelope of a window function at a given hop length.
This is used to estimate modulation effects induced by windowing
observations in short-time fourier transforms.
Parameters
----------
window : string, tuple, number, callable, or list-like
Window specification, as in `get_window`
n_frames : int > 0
The number of analysis frames
hop_length : int > 0
The number of samples to advance between frames
win_length : [optional]
The length of the window function. By default, this matches `n_fft`.
n_fft : int > 0
The length of each analysis frame.
dtype : np.dtype
The data type of the output
Returns
-------
wss : np.ndarray, shape=`(n_fft + hop_length * (n_frames - 1))`
The sum-squared envelope of the window function
"""
if win_length is None:
win_length = n_fft
n = n_fft + hop_length * (n_frames - 1)
x = np.zeros(n, dtype=dtype)
# Compute the squared window at the desired length
win_sq = get_window(window, win_length, fftbins=True)
win_sq = librosa_util.normalize(win_sq, norm=norm) ** 2
win_sq = librosa_util.pad_center(win_sq, n_fft)
# Fill the envelope
for i in range(n_frames):
sample = i * hop_length
x[sample : min(n, sample + n_fft)] += win_sq[: max(0, min(n_fft, n - sample))]
return x
def griffin_lim(magnitudes, stft_fn, n_iters=30):
"""
PARAMS
------
magnitudes: spectrogram magnitudes
stft_fn: STFT class with transform (STFT) and inverse (ISTFT) methods
"""
angles = np.angle(np.exp(2j * np.pi * np.random.rand(*magnitudes.size())))
angles = angles.astype(np.float32)
angles = torch.autograd.Variable(torch.from_numpy(angles))
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
for i in range(n_iters):
_, angles = stft_fn.transform(signal)
signal = stft_fn.inverse(magnitudes, angles).squeeze(1)
return signal
def dynamic_range_compression(x, normalize_fun=torch.log, C=1, clip_val=1e-5):
"""
PARAMS
------
C: compression factor
"""
return normalize_fun(torch.clamp(x, min=clip_val) * C)
def dynamic_range_decompression(x, C=1):
"""
PARAMS
------
C: compression factor used to compress
"""
return torch.exp(x) / C
class TacotronSTFT(torch.nn.Module):
def __init__(
self,
filter_length,
hop_length,
win_length,
n_mel_channels,
sampling_rate,
mel_fmin,
mel_fmax,
):
super(TacotronSTFT, self).__init__()
self.n_mel_channels = n_mel_channels
self.sampling_rate = sampling_rate
self.stft_fn = STFT(filter_length, hop_length, win_length)
mel_basis = librosa_mel_fn(
sampling_rate, filter_length, n_mel_channels, mel_fmin, mel_fmax
)
mel_basis = torch.from_numpy(mel_basis).float()
self.register_buffer("mel_basis", mel_basis)
def spectral_normalize(self, magnitudes, normalize_fun):
output = dynamic_range_compression(magnitudes, normalize_fun)
return output
def spectral_de_normalize(self, magnitudes):
output = dynamic_range_decompression(magnitudes)
return output
def mel_spectrogram(self, y, normalize_fun=torch.log):
"""Computes mel-spectrograms from a batch of waves
PARAMS
------
y: Variable(torch.FloatTensor) with shape (B, T) in range [-1, 1]
RETURNS
-------
mel_output: torch.FloatTensor of shape (B, n_mel_channels, T)
"""
assert torch.min(y.data) >= -1, torch.min(y.data)
assert torch.max(y.data) <= 1, torch.max(y.data)
magnitudes, phases = self.stft_fn.transform(y)
magnitudes = magnitudes.data
mel_output = torch.matmul(self.mel_basis, magnitudes)
mel_output = self.spectral_normalize(mel_output, normalize_fun)
energy = torch.norm(magnitudes, dim=1)
log_magnitudes = self.spectral_normalize(magnitudes, normalize_fun)
return mel_output, log_magnitudes, energy
def pad_wav(waveform, segment_length):
waveform_length = waveform.shape[-1]
assert waveform_length > 100, "Waveform is too short, %s" % waveform_length
if segment_length is None or waveform_length == segment_length:
return waveform
elif waveform_length > segment_length:
return waveform[:,:segment_length]
elif waveform_length < segment_length:
temp_wav = np.zeros((1, segment_length))
temp_wav[:, :waveform_length] = waveform
return temp_wav
def normalize_wav(waveform):
waveform = waveform - np.mean(waveform)
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
return waveform * 0.5
def _pad_spec(fbank, target_length=1024):
n_frames = fbank.shape[0]
p = target_length - n_frames
# cut and pad
if p > 0:
m = torch.nn.ZeroPad2d((0, 0, 0, p))
fbank = m(fbank)
elif p < 0:
fbank = fbank[0:target_length, :]
if fbank.size(-1) % 2 != 0:
fbank = fbank[..., :-1]
return fbank
def get_mel_from_wav(audio, _stft):
audio = torch.clip(torch.FloatTensor(audio).unsqueeze(0), -1, 1)
audio = torch.autograd.Variable(audio, requires_grad=False)
melspec, log_magnitudes_stft, energy = _stft.mel_spectrogram(audio)
melspec = torch.squeeze(melspec, 0).numpy().astype(np.float32)
log_magnitudes_stft = (
torch.squeeze(log_magnitudes_stft, 0).numpy().astype(np.float32)
)
energy = torch.squeeze(energy, 0).numpy().astype(np.float32)
return melspec, log_magnitudes_stft, energy
def read_wav_file_io(bytes):
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
waveform, sr = torchaudio.load(bytes, format='mp4') # Faster!!!
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
# waveform = waveform.numpy()[0, ...]
# waveform = normalize_wav(waveform)
# waveform = waveform[None, ...]
# waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
# waveform = 0.5 * waveform
return waveform
def load_audio(bytes, sample_rate=16000):
waveform, sr = torchaudio.load(bytes, format='mp4')
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=sample_rate)
return waveform
def read_wav_file(filename):
# waveform, sr = librosa.load(filename, sr=None, mono=True) # 4 times slower
waveform, sr = torchaudio.load(filename) # Faster!!!
waveform = torchaudio.functional.resample(waveform, orig_freq=sr, new_freq=16000)
waveform = waveform.numpy()[0, ...]
waveform = normalize_wav(waveform)
waveform = waveform[None, ...]
waveform = waveform / np.max(np.abs(waveform))
waveform = 0.5 * waveform
return waveform
def norm_wav_tensor(waveform: torch.FloatTensor):
waveform = waveform.numpy()[0, ...]
waveform = normalize_wav(waveform)
waveform = waveform[None, ...]
waveform = waveform / (np.max(np.abs(waveform)) + 1e-8)
waveform = 0.5 * waveform
return waveform
def wav_to_fbank(filename, target_length=1024, fn_STFT=None):
if fn_STFT is None:
fn_STFT = TacotronSTFT(
1024, # filter_length
160, # hop_length
1024, # win_length
64, # n_mel
16000, # sample_rate
0, # fmin
8000, # fmax
)
# mixup
waveform = read_wav_file(filename, target_length * 160) # hop size is 160
waveform = waveform[0, ...]
waveform = torch.FloatTensor(waveform)
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = torch.FloatTensor(fbank.T)
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank, log_magnitudes_stft, waveform
def wav_tensor_to_fbank(waveform, target_length=512, fn_STFT=None):
if fn_STFT is None:
fn_STFT = TacotronSTFT(
1024, # filter_length
160, # hop_length
1024, # win_length
256, # n_mel
16000, # sample_rate
0, # fmin
8000, # fmax
) # In practice used
fbank, log_magnitudes_stft, energy = get_mel_from_wav(waveform, fn_STFT)
fbank = torch.FloatTensor(fbank.T)
log_magnitudes_stft = torch.FloatTensor(log_magnitudes_stft.T)
fbank, log_magnitudes_stft = _pad_spec(fbank, target_length), _pad_spec(
log_magnitudes_stft, target_length
)
return fbank |