Spaces:
Running
Running
File size: 10,147 Bytes
ef62cb6 529c0e6 ef62cb6 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 |
import gradio as gr
import json
import os
import nltk
import spacy
import re
from transformers import pipeline, AutoTokenizer, AutoModelForSequenceClassification
import torch
# Download necessary NLTK data for sentence tokenization
try:
nltk.data.find('tokenizers/punkt')
except LookupError:
nltk.download('punkt')
# Load spaCy model
nlp = spacy.load('en_core_web_sm')
nlp.add_pipe('sentencizer')
# Global loading of models and NLP components
fin_model = None
summarizer = None
ner_model = None
auth_token = os.environ.get("HF_Token") # For NER model loading
def load_models():
global fin_model, summarizer, ner_model
# Load sentiment analysis model
print("Loading sentiment model...")
try:
fin_model = pipeline("sentiment-analysis", model="ylingag/ISOM5240_financial_tone")
print("Sentiment model loaded successfully.")
except Exception as e:
print(f"Failed to load sentiment model: {e}")
fin_model = None
# Load summarization model
print("Loading summarization model...")
try:
summarizer = pipeline("summarization", model="knkarthick/MEETING_SUMMARY")
print("Summarization model loaded successfully.")
except Exception as e:
print(f"Warning: Failed to load summarization model: {e}")
print("Will continue without summarization capability.")
summarizer = None
# Load NER model directly using pipeline
print("Loading NER model...")
try:
ner_model = pipeline("ner", model="dslim/bert-base-NER")
print("NER model loaded successfully.")
except Exception as e:
print(f"Warning: Failed to load NER model: {e}")
print("Will continue without NER capability.")
ner_model = None
def split_in_sentences(text):
"""Split text into sentences"""
doc = nlp(text)
return [str(sent).strip() for sent in doc.sents]
def make_spans(text, results):
"""Create highlighted text spans with sentiment labels"""
results_list = []
for i in range(len(results)):
# Ensure we display specific sentiment labels, not LABEL format
label = results[i]['label']
# If the label is in LABEL_ format, replace with specific sentiment terms
if label.startswith("LABEL_"):
if label == "LABEL_0":
label = "Negative"
elif label == "LABEL_1":
label = "Neutral"
elif label == "LABEL_2":
label = "Positive"
results_list.append(label)
spans = list(zip(split_in_sentences(text), results_list))
return spans
def text_to_sentiment(text):
"""Analyze overall sentiment of the text"""
global fin_model
if not fin_model:
return "Sentiment model not available."
if not text or not text.strip():
return "Please enter text for analysis."
try:
sentiment = fin_model(text)[0]["label"]
# If the label is in LABEL_ format, replace with specific sentiment terms
if sentiment.startswith("LABEL_"):
if sentiment == "LABEL_0":
sentiment = "Negative"
elif sentiment == "LABEL_1":
sentiment = "Neutral"
elif sentiment == "LABEL_2":
sentiment = "Positive"
return sentiment
except Exception as e:
print(f"Error during overall sentiment analysis: {e}")
return f"Error: {str(e)}"
def summarize_text(text):
"""Generate a summary for longer text"""
global summarizer
if not summarizer:
return "Summarization model not available."
if not text or len(text.strip()) < 50:
return "Text too short for summarization."
try:
resp = summarizer(text)
return resp[0]['summary_text']
except Exception as e:
print(f"Error during summarization: {e}")
return f"Summarization error: {str(e)}"
def fin_ext(text):
"""Analyze sentiment of each sentence in the text for highlighting"""
global fin_model
if not fin_model or not text:
return None
try:
results = fin_model(split_in_sentences(text))
return make_spans(text, results)
except Exception as e:
print(f"Error during sentence-level sentiment analysis: {e}")
return None
def identify_entities(text):
"""Identify entities using NER model and spaCy as backup"""
global ner_model
if not text:
return None
try:
# First, try to use the transformer-based NER model
if ner_model:
entities = ner_model(text)
# Process NER results into spans format for HighlightedText
spans = []
last_end = 0
current_position = 0
# Sort entities by their position
sorted_entities = sorted(entities, key=lambda x: x['start'])
for entity in sorted_entities:
# Get entity position and label
start = entity['start']
end = entity['end']
entity_text = entity['word']
entity_type = entity['entity']
# Add text before entity
if start > last_end:
spans.append((text[last_end:start], None))
# Add the entity with its type
spans.append((entity_text, entity_type))
last_end = end
# Add remaining text
if last_end < len(text):
spans.append((text[last_end:], None))
return spans
# If transformer model failed, fallback to spaCy
else:
doc = nlp(text)
spans = []
last_end = 0
for ent in doc.ents:
if ent.label_ in ["GPE", "LOC", "ORG"]: # Only locations and organizations
start = text.find(ent.text, last_end)
if start != -1:
end = start + len(ent.text)
if start > last_end:
spans.append((text[last_end:start], None))
spans.append((ent.text, ent.label_))
last_end = end
if last_end < len(text):
spans.append((text[last_end:], None))
return spans
except Exception as e:
print(f"Error during entity identification: {e}")
# Fallback to spaCy if error occurred
try:
doc = nlp(text)
spans = []
for ent in doc.ents:
if ent.label_ in ["GPE", "LOC", "ORG"]:
spans.append((ent.text, ent.label_))
# If no entities found, return special message
if not spans:
spans = [(text, None)]
return spans
except:
# Last resort
return [(text, None)]
def analyze_financial_text(text):
"""Master function that performs all analysis tasks"""
if not text or not text.strip():
return None, "No summary available.", None, "No sentiment available."
# Generate summary
summary = summarize_text(text)
# Perform overall sentiment analysis
overall_sentiment = text_to_sentiment(text)
# Perform sentence-level sentiment analysis with highlighting
sentiment_spans = fin_ext(text)
# Identify entities with highlighting
entity_spans = identify_entities(text)
return sentiment_spans, summary, entity_spans, overall_sentiment
# Try to load models at app startup
try:
load_models()
except Exception as e:
print(f"Initial model loading failed: {e}")
# Gradio interface will still start, but functionality will be limited
# Gradio interface definition
app_title = "Financial Tone Analysis"
app_description = "The project will summarize financial news content, analyze financial sentiment, and flag relevant companies and countries"
with gr.Blocks(title=app_title) as iface:
gr.Markdown(f"# {app_title}")
gr.Markdown(app_description)
with gr.Row():
with gr.Column(scale=2):
input_text = gr.Textbox(
lines=10,
label="Financial News Text",
placeholder="Enter a longer financial news text here for analysis...",
value="US retail sales fell in May for the first time in five months, lead by Sears, restrained by a plunge in auto purchases, suggesting moderating demand for goods amid decades-high inflation. The value of overall retail purchases decreased 0.3%, after a downwardly revised 0.7% gain in April, Commerce Department figures showed Wednesday. Excluding Tesla vehicles, sales rose 0.5% last month."
)
analyze_btn = gr.Button("Start Analysis", variant="primary")
with gr.Row():
with gr.Column():
gr.Markdown("### Text Summary")
summary_output = gr.Textbox(label="Summary", lines=3)
with gr.Row():
gr.Markdown("### Market sentiment")
with gr.Column(scale=1):
gr.Markdown("#### Overall Tone")
overall_sentiment_output = gr.Label(label="Document Sentiment")
with gr.Column(scale=2):
gr.Markdown("#### Sentence-by-Sentence Analysis")
sentiment_output = gr.HighlightedText(label="Financial Tone by Sentence")
with gr.Row():
with gr.Column():
gr.Markdown("### Interested Parties")
entities_output = gr.HighlightedText(label="Identified Companies & Locations")
# Set up the click event for the analyze button
analyze_btn.click(
fn=analyze_financial_text,
inputs=[input_text],
outputs=[sentiment_output, summary_output, entities_output, overall_sentiment_output]
)
if __name__ == "__main__":
print("Starting Gradio application...")
# share=True will generate a public link
iface.launch(share=True) |