File size: 24,639 Bytes
a47980a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 |
from collections import deque
from functools import partial
from inspect import isfunction
import torch.nn.functional as F
import librosa.sequence
import numpy as np
from torch.nn import Conv1d
from torch.nn import Mish
import torch
from torch import nn
from tqdm import tqdm
import math
def exists(x):
return x is not None
def default(val, d):
if exists(val):
return val
return d() if isfunction(d) else d
def extract(a, t):
return a[t].reshape((1, 1, 1, 1))
def noise_like(shape, device, repeat=False):
repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1)))
noise = lambda: torch.randn(shape, device=device)
return repeat_noise() if repeat else noise()
def linear_beta_schedule(timesteps, max_beta=0.02):
"""
linear schedule
"""
betas = np.linspace(1e-4, max_beta, timesteps)
return betas
def cosine_beta_schedule(timesteps, s=0.008):
"""
cosine schedule
as proposed in https://openreview.net/forum?id=-NEXDKk8gZ
"""
steps = timesteps + 1
x = np.linspace(0, steps, steps)
alphas_cumprod = np.cos(((x / steps) + s) / (1 + s) * np.pi * 0.5) ** 2
alphas_cumprod = alphas_cumprod / alphas_cumprod[0]
betas = 1 - (alphas_cumprod[1:] / alphas_cumprod[:-1])
return np.clip(betas, a_min=0, a_max=0.999)
beta_schedule = {
"cosine": cosine_beta_schedule,
"linear": linear_beta_schedule,
}
def extract_1(a, t):
return a[t].reshape((1, 1, 1, 1))
def predict_stage0(noise_pred, noise_pred_prev):
return (noise_pred + noise_pred_prev) / 2
def predict_stage1(noise_pred, noise_list):
return (noise_pred * 3
- noise_list[-1]) / 2
def predict_stage2(noise_pred, noise_list):
return (noise_pred * 23
- noise_list[-1] * 16
+ noise_list[-2] * 5) / 12
def predict_stage3(noise_pred, noise_list):
return (noise_pred * 55
- noise_list[-1] * 59
+ noise_list[-2] * 37
- noise_list[-3] * 9) / 24
class SinusoidalPosEmb(nn.Module):
def __init__(self, dim):
super().__init__()
self.dim = dim
self.half_dim = dim // 2
self.emb = 9.21034037 / (self.half_dim - 1)
self.emb = torch.exp(torch.arange(self.half_dim) * torch.tensor(-self.emb)).unsqueeze(0)
self.emb = self.emb.cpu()
def forward(self, x):
emb = self.emb * x
emb = torch.cat((emb.sin(), emb.cos()), dim=-1)
return emb
class ResidualBlock(nn.Module):
def __init__(self, encoder_hidden, residual_channels, dilation):
super().__init__()
self.residual_channels = residual_channels
self.dilated_conv = Conv1d(residual_channels, 2 * residual_channels, 3, padding=dilation, dilation=dilation)
self.diffusion_projection = nn.Linear(residual_channels, residual_channels)
self.conditioner_projection = Conv1d(encoder_hidden, 2 * residual_channels, 1)
self.output_projection = Conv1d(residual_channels, 2 * residual_channels, 1)
def forward(self, x, conditioner, diffusion_step):
diffusion_step = self.diffusion_projection(diffusion_step).unsqueeze(-1)
conditioner = self.conditioner_projection(conditioner)
y = x + diffusion_step
y = self.dilated_conv(y) + conditioner
gate, filter_1 = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
y = torch.sigmoid(gate) * torch.tanh(filter_1)
y = self.output_projection(y)
residual, skip = torch.split(y, [self.residual_channels, self.residual_channels], dim=1)
return (x + residual) / 1.41421356, skip
class DiffNet(nn.Module):
def __init__(self, in_dims, n_layers, n_chans, n_hidden):
super().__init__()
self.encoder_hidden = n_hidden
self.residual_layers = n_layers
self.residual_channels = n_chans
self.input_projection = Conv1d(in_dims, self.residual_channels, 1)
self.diffusion_embedding = SinusoidalPosEmb(self.residual_channels)
dim = self.residual_channels
self.mlp = nn.Sequential(
nn.Linear(dim, dim * 4),
Mish(),
nn.Linear(dim * 4, dim)
)
self.residual_layers = nn.ModuleList([
ResidualBlock(self.encoder_hidden, self.residual_channels, 1)
for i in range(self.residual_layers)
])
self.skip_projection = Conv1d(self.residual_channels, self.residual_channels, 1)
self.output_projection = Conv1d(self.residual_channels, in_dims, 1)
nn.init.zeros_(self.output_projection.weight)
def forward(self, spec, diffusion_step, cond):
x = spec.squeeze(0)
x = self.input_projection(x) # x [B, residual_channel, T]
x = F.relu(x)
# skip = torch.randn_like(x)
diffusion_step = diffusion_step.float()
diffusion_step = self.diffusion_embedding(diffusion_step)
diffusion_step = self.mlp(diffusion_step)
x, skip = self.residual_layers[0](x, cond, diffusion_step)
# noinspection PyTypeChecker
for layer in self.residual_layers[1:]:
x, skip_connection = layer.forward(x, cond, diffusion_step)
skip = skip + skip_connection
x = skip / math.sqrt(len(self.residual_layers))
x = self.skip_projection(x)
x = F.relu(x)
x = self.output_projection(x) # [B, 80, T]
return x.unsqueeze(1)
class AfterDiffusion(nn.Module):
def __init__(self, spec_max, spec_min, v_type='a'):
super().__init__()
self.spec_max = spec_max
self.spec_min = spec_min
self.type = v_type
def forward(self, x):
x = x.squeeze(1).permute(0, 2, 1)
mel_out = (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
if self.type == 'nsf-hifigan-log10':
mel_out = mel_out * 0.434294
return mel_out.transpose(2, 1)
class Pred(nn.Module):
def __init__(self, alphas_cumprod):
super().__init__()
self.alphas_cumprod = alphas_cumprod
def forward(self, x_1, noise_t, t_1, t_prev):
a_t = extract(self.alphas_cumprod, t_1).cpu()
a_prev = extract(self.alphas_cumprod, t_prev).cpu()
a_t_sq, a_prev_sq = a_t.sqrt().cpu(), a_prev.sqrt().cpu()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x_1 + x_delta.cpu()
return x_pred
class GaussianDiffusion(nn.Module):
def __init__(self,
out_dims=128,
n_layers=20,
n_chans=384,
n_hidden=256,
timesteps=1000,
k_step=1000,
max_beta=0.02,
spec_min=-12,
spec_max=2):
super().__init__()
self.denoise_fn = DiffNet(out_dims, n_layers, n_chans, n_hidden)
self.out_dims = out_dims
self.mel_bins = out_dims
self.n_hidden = n_hidden
betas = beta_schedule['linear'](timesteps, max_beta=max_beta)
alphas = 1. - betas
alphas_cumprod = np.cumprod(alphas, axis=0)
alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1])
timesteps, = betas.shape
self.num_timesteps = int(timesteps)
self.k_step = k_step
self.noise_list = deque(maxlen=4)
to_torch = partial(torch.tensor, dtype=torch.float32)
self.register_buffer('betas', to_torch(betas))
self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod))
self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev))
# calculations for diffusion q(x_t | x_{t-1}) and others
self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod)))
self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod)))
self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod)))
self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod)))
self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1)))
# calculations for posterior q(x_{t-1} | x_t, x_0)
posterior_variance = betas * (1. - alphas_cumprod_prev) / (1. - alphas_cumprod)
# above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t)
self.register_buffer('posterior_variance', to_torch(posterior_variance))
# below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain
self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20))))
self.register_buffer('posterior_mean_coef1', to_torch(
betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod)))
self.register_buffer('posterior_mean_coef2', to_torch(
(1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod)))
self.register_buffer('spec_min', torch.FloatTensor([spec_min])[None, None, :out_dims])
self.register_buffer('spec_max', torch.FloatTensor([spec_max])[None, None, :out_dims])
self.ad = AfterDiffusion(self.spec_max, self.spec_min)
self.xp = Pred(self.alphas_cumprod)
def q_mean_variance(self, x_start, t):
mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start
variance = extract(1. - self.alphas_cumprod, t, x_start.shape)
log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape)
return mean, variance, log_variance
def predict_start_from_noise(self, x_t, t, noise):
return (
extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t -
extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise
)
def q_posterior(self, x_start, x_t, t):
posterior_mean = (
extract(self.posterior_mean_coef1, t, x_t.shape) * x_start +
extract(self.posterior_mean_coef2, t, x_t.shape) * x_t
)
posterior_variance = extract(self.posterior_variance, t, x_t.shape)
posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape)
return posterior_mean, posterior_variance, posterior_log_variance_clipped
def p_mean_variance(self, x, t, cond):
noise_pred = self.denoise_fn(x, t, cond=cond)
x_recon = self.predict_start_from_noise(x, t=t, noise=noise_pred)
x_recon.clamp_(-1., 1.)
model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t)
return model_mean, posterior_variance, posterior_log_variance
@torch.no_grad()
def p_sample(self, x, t, cond, clip_denoised=True, repeat_noise=False):
b, *_, device = *x.shape, x.device
model_mean, _, model_log_variance = self.p_mean_variance(x=x, t=t, cond=cond)
noise = noise_like(x.shape, device, repeat_noise)
# no noise when t == 0
nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1)))
return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise
@torch.no_grad()
def p_sample_plms(self, x, t, interval, cond, clip_denoised=True, repeat_noise=False):
"""
Use the PLMS method from
[Pseudo Numerical Methods for Diffusion Models on Manifolds](https://arxiv.org/abs/2202.09778).
"""
def get_x_pred(x, noise_t, t):
a_t = extract(self.alphas_cumprod, t)
a_prev = extract(self.alphas_cumprod, torch.max(t - interval, torch.zeros_like(t)))
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x - 1 / (
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x + x_delta
return x_pred
noise_list = self.noise_list
noise_pred = self.denoise_fn(x, t, cond=cond)
if len(noise_list) == 0:
x_pred = get_x_pred(x, noise_pred, t)
noise_pred_prev = self.denoise_fn(x_pred, max(t - interval, 0), cond=cond)
noise_pred_prime = (noise_pred + noise_pred_prev) / 2
elif len(noise_list) == 1:
noise_pred_prime = (3 * noise_pred - noise_list[-1]) / 2
elif len(noise_list) == 2:
noise_pred_prime = (23 * noise_pred - 16 * noise_list[-1] + 5 * noise_list[-2]) / 12
else:
noise_pred_prime = (55 * noise_pred - 59 * noise_list[-1] + 37 * noise_list[-2] - 9 * noise_list[-3]) / 24
x_prev = get_x_pred(x, noise_pred_prime, t)
noise_list.append(noise_pred)
return x_prev
def q_sample(self, x_start, t, noise=None):
noise = default(noise, lambda: torch.randn_like(x_start))
return (
extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start +
extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise
)
def p_losses(self, x_start, t, cond, noise=None, loss_type='l2'):
noise = default(noise, lambda: torch.randn_like(x_start))
x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise)
x_recon = self.denoise_fn(x_noisy, t, cond)
if loss_type == 'l1':
loss = (noise - x_recon).abs().mean()
elif loss_type == 'l2':
loss = F.mse_loss(noise, x_recon)
else:
raise NotImplementedError()
return loss
def org_forward(self,
condition,
init_noise=None,
gt_spec=None,
infer=True,
infer_speedup=100,
method='pndm',
k_step=1000,
use_tqdm=True):
"""
conditioning diffusion, use fastspeech2 encoder output as the condition
"""
cond = condition
b, device = condition.shape[0], condition.device
if not infer:
spec = self.norm_spec(gt_spec)
t = torch.randint(0, self.k_step, (b,), device=device).long()
norm_spec = spec.transpose(1, 2)[:, None, :, :] # [B, 1, M, T]
return self.p_losses(norm_spec, t, cond=cond)
else:
shape = (cond.shape[0], 1, self.out_dims, cond.shape[2])
if gt_spec is None:
t = self.k_step
if init_noise is None:
x = torch.randn(shape, device=device)
else:
x = init_noise
else:
t = k_step
norm_spec = self.norm_spec(gt_spec)
norm_spec = norm_spec.transpose(1, 2)[:, None, :, :]
x = self.q_sample(x_start=norm_spec, t=torch.tensor([t - 1], device=device).long())
if method is not None and infer_speedup > 1:
if method == 'dpm-solver':
from .dpm_solver_pytorch import NoiseScheduleVP, model_wrapper, DPM_Solver
# 1. Define the noise schedule.
noise_schedule = NoiseScheduleVP(schedule='discrete', betas=self.betas[:t])
# 2. Convert your discrete-time `model` to the continuous-time
# noise prediction model. Here is an example for a diffusion model
# `model` with the noise prediction type ("noise") .
def my_wrapper(fn):
def wrapped(x, t, **kwargs):
ret = fn(x, t, **kwargs)
if use_tqdm:
self.bar.update(1)
return ret
return wrapped
model_fn = model_wrapper(
my_wrapper(self.denoise_fn),
noise_schedule,
model_type="noise", # or "x_start" or "v" or "score"
model_kwargs={"cond": cond}
)
# 3. Define dpm-solver and sample by singlestep DPM-Solver.
# (We recommend singlestep DPM-Solver for unconditional sampling)
# You can adjust the `steps` to balance the computation
# costs and the sample quality.
dpm_solver = DPM_Solver(model_fn, noise_schedule)
steps = t // infer_speedup
if use_tqdm:
self.bar = tqdm(desc="sample time step", total=steps)
x = dpm_solver.sample(
x,
steps=steps,
order=3,
skip_type="time_uniform",
method="singlestep",
)
if use_tqdm:
self.bar.close()
elif method == 'pndm':
self.noise_list = deque(maxlen=4)
if use_tqdm:
for i in tqdm(
reversed(range(0, t, infer_speedup)), desc='sample time step',
total=t // infer_speedup,
):
x = self.p_sample_plms(
x, torch.full((b,), i, device=device, dtype=torch.long),
infer_speedup, cond=cond
)
else:
for i in reversed(range(0, t, infer_speedup)):
x = self.p_sample_plms(
x, torch.full((b,), i, device=device, dtype=torch.long),
infer_speedup, cond=cond
)
else:
raise NotImplementedError(method)
else:
if use_tqdm:
for i in tqdm(reversed(range(0, t)), desc='sample time step', total=t):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
else:
for i in reversed(range(0, t)):
x = self.p_sample(x, torch.full((b,), i, device=device, dtype=torch.long), cond)
x = x.squeeze(1).transpose(1, 2) # [B, T, M]
return self.denorm_spec(x).transpose(2, 1)
def norm_spec(self, x):
return (x - self.spec_min) / (self.spec_max - self.spec_min) * 2 - 1
def denorm_spec(self, x):
return (x + 1) / 2 * (self.spec_max - self.spec_min) + self.spec_min
def get_x_pred(self, x_1, noise_t, t_1, t_prev):
a_t = extract(self.alphas_cumprod, t_1)
a_prev = extract(self.alphas_cumprod, t_prev)
a_t_sq, a_prev_sq = a_t.sqrt(), a_prev.sqrt()
x_delta = (a_prev - a_t) * ((1 / (a_t_sq * (a_t_sq + a_prev_sq))) * x_1 - 1 / (
a_t_sq * (((1 - a_prev) * a_t).sqrt() + ((1 - a_t) * a_prev).sqrt())) * noise_t)
x_pred = x_1 + x_delta
return x_pred
def OnnxExport(self, project_name=None, init_noise=None, hidden_channels=256, export_denoise=True, export_pred=True, export_after=True):
cond = torch.randn([1, self.n_hidden, 10]).cpu()
if init_noise is None:
x = torch.randn((1, 1, self.mel_bins, cond.shape[2]), dtype=torch.float32).cpu()
else:
x = init_noise
pndms = 100
org_y_x = self.org_forward(cond, init_noise=x)
device = cond.device
n_frames = cond.shape[2]
step_range = torch.arange(0, self.k_step, pndms, dtype=torch.long, device=device).flip(0)
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
ot = step_range[0]
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
if export_denoise:
torch.onnx.export(
self.denoise_fn,
(x.cpu(), ot_1.cpu(), cond.cpu()),
f"{project_name}_denoise.onnx",
input_names=["noise", "time", "condition"],
output_names=["noise_pred"],
dynamic_axes={
"noise": [3],
"condition": [2]
},
opset_version=16
)
for t in step_range:
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
noise_pred = self.denoise_fn(x, t_1, cond)
t_prev = t_1 - pndms
t_prev = t_prev * (t_prev > 0)
if plms_noise_stage == 0:
if export_pred:
torch.onnx.export(
self.xp,
(x.cpu(), noise_pred.cpu(), t_1.cpu(), t_prev.cpu()),
f"{project_name}_pred.onnx",
input_names=["noise", "noise_pred", "time", "time_prev"],
output_names=["noise_pred_o"],
dynamic_axes={
"noise": [3],
"noise_pred": [3]
},
opset_version=16
)
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
elif plms_noise_stage == 1:
noise_pred_prime = predict_stage1(noise_pred, noise_list)
elif plms_noise_stage == 2:
noise_pred_prime = predict_stage2(noise_pred, noise_list)
else:
noise_pred_prime = predict_stage3(noise_pred, noise_list)
noise_pred = noise_pred.unsqueeze(0)
if plms_noise_stage < 3:
noise_list = torch.cat((noise_list, noise_pred), dim=0)
plms_noise_stage = plms_noise_stage + 1
else:
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
if export_after:
torch.onnx.export(
self.ad,
x.cpu(),
f"{project_name}_after.onnx",
input_names=["x"],
output_names=["mel_out"],
dynamic_axes={
"x": [3]
},
opset_version=16
)
x = self.ad(x)
print((x == org_y_x).all())
return x
def forward(self, condition=None, init_noise=None, pndms=None, k_step=None):
cond = condition
x = init_noise
device = cond.device
n_frames = cond.shape[2]
step_range = torch.arange(0, k_step.item(), pndms.item(), dtype=torch.long, device=device).flip(0)
plms_noise_stage = torch.tensor(0, dtype=torch.long, device=device)
noise_list = torch.zeros((0, 1, 1, self.mel_bins, n_frames), device=device)
ot = step_range[0]
ot_1 = torch.full((1,), ot, device=device, dtype=torch.long)
for t in step_range:
t_1 = torch.full((1,), t, device=device, dtype=torch.long)
noise_pred = self.denoise_fn(x, t_1, cond)
t_prev = t_1 - pndms
t_prev = t_prev * (t_prev > 0)
if plms_noise_stage == 0:
x_pred = self.get_x_pred(x, noise_pred, t_1, t_prev)
noise_pred_prev = self.denoise_fn(x_pred, t_prev, cond=cond)
noise_pred_prime = predict_stage0(noise_pred, noise_pred_prev)
elif plms_noise_stage == 1:
noise_pred_prime = predict_stage1(noise_pred, noise_list)
elif plms_noise_stage == 2:
noise_pred_prime = predict_stage2(noise_pred, noise_list)
else:
noise_pred_prime = predict_stage3(noise_pred, noise_list)
noise_pred = noise_pred.unsqueeze(0)
if plms_noise_stage < 3:
noise_list = torch.cat((noise_list, noise_pred), dim=0)
plms_noise_stage = plms_noise_stage + 1
else:
noise_list = torch.cat((noise_list[-2:], noise_pred), dim=0)
x = self.get_x_pred(x, noise_pred_prime, t_1, t_prev)
x = self.ad(x)
return x
|