File size: 5,540 Bytes
375a436
 
 
 
 
 
 
 
a6f45eb
 
 
 
 
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Perceptual Path Length (PPL) from the paper "A Style-Based Generator
Architecture for Generative Adversarial Networks". Matches the original
implementation by Karras et al. at
https://github.com/NVlabs/stylegan/blob/master/metrics/perceptual_path_length.py"""

import copy
import numpy as np
import torch
import dnnlib
from . import metric_utils

#----------------------------------------------------------------------------

# Spherical interpolation of a batch of vectors.
def slerp(a, b, t):
    a = a / a.norm(dim=-1, keepdim=True)
    b = b / b.norm(dim=-1, keepdim=True)
    d = (a * b).sum(dim=-1, keepdim=True)
    p = t * torch.acos(d)
    c = b - d * a
    c = c / c.norm(dim=-1, keepdim=True)
    d = a * torch.cos(p) + c * torch.sin(p)
    d = d / d.norm(dim=-1, keepdim=True)
    return d

#----------------------------------------------------------------------------

class PPLSampler(torch.nn.Module):
    def __init__(self, G, G_kwargs, epsilon, space, sampling, crop, vgg16):
        assert space in ['z', 'w']
        assert sampling in ['full', 'end']
        super().__init__()
        self.G = copy.deepcopy(G)
        self.G_kwargs = G_kwargs
        self.epsilon = epsilon
        self.space = space
        self.sampling = sampling
        self.crop = crop
        self.vgg16 = copy.deepcopy(vgg16)

    def forward(self, c):
        # Generate random latents and interpolation t-values.
        t = torch.rand([c.shape[0]], device=c.device) * (1 if self.sampling == 'full' else 0)
        z0, z1 = torch.randn([c.shape[0] * 2, self.G.z_dim], device=c.device).chunk(2)

        # Interpolate in W or Z.
        if self.space == 'w':
            w0, w1 = self.G.mapping(z=torch.cat([z0,z1]), c=torch.cat([c,c])).chunk(2)
            wt0 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2))
            wt1 = w0.lerp(w1, t.unsqueeze(1).unsqueeze(2) + self.epsilon)
        else: # space == 'z'
            zt0 = slerp(z0, z1, t.unsqueeze(1))
            zt1 = slerp(z0, z1, t.unsqueeze(1) + self.epsilon)
            wt0, wt1 = self.G.mapping(z=torch.cat([zt0,zt1]), c=torch.cat([c,c])).chunk(2)

        # Randomize noise buffers.
        for name, buf in self.G.named_buffers():
            if name.endswith('.noise_const'):
                buf.copy_(torch.randn_like(buf))

        # Generate images.
        img = self.G.synthesis(ws=torch.cat([wt0,wt1]), noise_mode='const', force_fp32=True, **self.G_kwargs)

        # Center crop.
        if self.crop:
            assert img.shape[2] == img.shape[3]
            c = img.shape[2] // 8
            img = img[:, :, c*3 : c*7, c*2 : c*6]

        # Downsample to 256x256.
        factor = self.G.img_resolution // 256
        if factor > 1:
            img = img.reshape([-1, img.shape[1], img.shape[2] // factor, factor, img.shape[3] // factor, factor]).mean([3, 5])

        # Scale dynamic range from [-1,1] to [0,255].
        img = (img + 1) * (255 / 2)
        if self.G.img_channels == 1:
            img = img.repeat([1, 3, 1, 1])

        # Evaluate differential LPIPS.
        lpips_t0, lpips_t1 = self.vgg16(img, resize_images=False, return_lpips=True).chunk(2)
        dist = (lpips_t0 - lpips_t1).square().sum(1) / self.epsilon ** 2
        return dist

#----------------------------------------------------------------------------

def compute_ppl(opts, num_samples, epsilon, space, sampling, crop, batch_size, jit=False):
    dataset = dnnlib.util.construct_class_by_name(**opts.dataset_kwargs)
    vgg16_url = 'https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/metrics/vgg16.pt'
    vgg16 = metric_utils.get_feature_detector(vgg16_url, num_gpus=opts.num_gpus, rank=opts.rank, verbose=opts.progress.verbose)

    # Setup sampler.
    sampler = PPLSampler(G=opts.G, G_kwargs=opts.G_kwargs, epsilon=epsilon, space=space, sampling=sampling, crop=crop, vgg16=vgg16)
    sampler.eval().requires_grad_(False).to(opts.device)
    if jit:
        c = torch.zeros([batch_size, opts.G.c_dim], device=opts.device)
        sampler = torch.jit.trace(sampler, [c], check_trace=False)

    # Sampling loop.
    dist = []
    progress = opts.progress.sub(tag='ppl sampling', num_items=num_samples)
    for batch_start in range(0, num_samples, batch_size * opts.num_gpus):
        progress.update(batch_start)
        c = [dataset.get_label(np.random.randint(len(dataset))) for _i in range(batch_size)]
        c = torch.from_numpy(np.stack(c)).pin_memory().to(opts.device)
        x = sampler(c)
        for src in range(opts.num_gpus):
            y = x.clone()
            if opts.num_gpus > 1:
                torch.distributed.broadcast(y, src=src)
            dist.append(y)
    progress.update(num_samples)

    # Compute PPL.
    if opts.rank != 0:
        return float('nan')
    dist = torch.cat(dist)[:num_samples].cpu().numpy()
    lo = np.percentile(dist, 1, interpolation='lower')
    hi = np.percentile(dist, 99, interpolation='higher')
    ppl = np.extract(np.logical_and(dist >= lo, dist <= hi), dist).mean()
    return float(ppl)

#----------------------------------------------------------------------------