File size: 8,336 Bytes
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1574d42
 
375a436
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
# Copyright (c) 2021, NVIDIA CORPORATION.  All rights reserved.
#
# NVIDIA CORPORATION and its licensors retain all intellectual property
# and proprietary rights in and to this software, related documentation
# and any modifications thereto.  Any use, reproduction, disclosure or
# distribution of this software and related documentation without an express
# license agreement from NVIDIA CORPORATION is strictly prohibited.

"""Calculate quality metrics for previous training run or pretrained network pickle."""

import os
import click
import json
import tempfile
import copy
import torch
import dnnlib

import legacy
from metrics import metric_main
from metrics import metric_utils
from torch_utils import training_stats
from torch_utils import custom_ops
from torch_utils import misc

#----------------------------------------------------------------------------

def subprocess_fn(rank, args, temp_dir):
    dnnlib.util.Logger(should_flush=True)

    # Init torch.distributed.
    if args.num_gpus > 1:
        init_file = os.path.abspath(os.path.join(temp_dir, '.torch_distributed_init'))
        if os.name == 'nt':
            init_method = 'file:///' + init_file.replace('\\', '/')
            torch.distributed.init_process_group(backend='gloo', init_method=init_method, rank=rank, world_size=args.num_gpus)
        else:
            init_method = f'file://{init_file}'
            torch.distributed.init_process_group(backend='nccl', init_method=init_method, rank=rank, world_size=args.num_gpus)

    # Init torch_utils.
    sync_device = torch.device('cuda', rank) if args.num_gpus > 1 else None
    training_stats.init_multiprocessing(rank=rank, sync_device=sync_device)
    if rank != 0 or not args.verbose:
        custom_ops.verbosity = 'none'

    # Print network summary.
    device = torch.device('cuda', rank)
    torch.backends.cudnn.benchmark = True
    torch.backends.cuda.matmul.allow_tf32 = False
    torch.backends.cudnn.allow_tf32 = False
    G = copy.deepcopy(args.G).eval().requires_grad_(False).to(device)
    if rank == 0 and args.verbose:
        z = torch.empty([1, G.z_dim], device=device)
        c = torch.empty([1, G.c_dim], device=device)
        misc.print_module_summary(G, [z, c])

    # Calculate each metric.
    for metric in args.metrics:
        if rank == 0 and args.verbose:
            print(f'Calculating {metric}...')
        progress = metric_utils.ProgressMonitor(verbose=args.verbose)
        result_dict = metric_main.calc_metric(metric=metric, G=G, dataset_kwargs=args.dataset_kwargs,
            num_gpus=args.num_gpus, rank=rank, device=device, progress=progress)
        if rank == 0:
            metric_main.report_metric(result_dict, run_dir=args.run_dir, snapshot_pkl=args.network_pkl)
        if rank == 0 and args.verbose:
            print()

    # Done.
    if rank == 0 and args.verbose:
        print('Exiting...')

#----------------------------------------------------------------------------

class CommaSeparatedList(click.ParamType):
    name = 'list'

    def convert(self, value, param, ctx):
        _ = param, ctx
        if value is None or value.lower() == 'none' or value == '':
            return []
        return value.split(',')

#----------------------------------------------------------------------------

@click.command()
@click.pass_context
@click.option('network_pkl', '--network', help='Network pickle filename or URL', metavar='PATH', required=True)
@click.option('--metrics', help='Comma-separated list or "none"', type=CommaSeparatedList(), default='fid50k_full', show_default=True)
@click.option('--data', help='Dataset to evaluate metrics against (directory or zip) [default: same as training data]', metavar='PATH')
@click.option('--mirror', help='Whether the dataset was augmented with x-flips during training [default: look up]', type=bool, metavar='BOOL')
@click.option('--gpus', help='Number of GPUs to use', type=int, default=1, metavar='INT', show_default=True)
@click.option('--verbose', help='Print optional information', type=bool, default=True, metavar='BOOL', show_default=True)

def calc_metrics(ctx, network_pkl, metrics, data, mirror, gpus, verbose):
    """Calculate quality metrics for previous training run or pretrained network pickle.

    Examples:

    \b
    # Previous training run: look up options automatically, save result to JSONL file.
    python calc_metrics.py --metrics=pr50k3_full \\
        --network=~/training-runs/00000-ffhq10k-res64-auto1/network-snapshot-000000.pkl

    \b
    # Pre-trained network pickle: specify dataset explicitly, print result to stdout.
    python calc_metrics.py --metrics=fid50k_full --data=~/datasets/ffhq.zip --mirror=1 \\
        --network=https://nvlabs-fi-cdn.nvidia.com/stylegan2-ada-pytorch/pretrained/ffhq.pkl

    Available metrics:

    \b
      ADA paper:
        fid50k_full  Frechet inception distance against the full dataset.
        kid50k_full  Kernel inception distance against the full dataset.
        pr50k3_full  Precision and recall againt the full dataset.
        is50k        Inception score for CIFAR-10.

    \b
      StyleGAN and StyleGAN2 papers:
        fid50k       Frechet inception distance against 50k real images.
        kid50k       Kernel inception distance against 50k real images.
        pr50k3       Precision and recall against 50k real images.
        ppl2_wend    Perceptual path length in W at path endpoints against full image.
        ppl_zfull    Perceptual path length in Z for full paths against cropped image.
        ppl_wfull    Perceptual path length in W for full paths against cropped image.
        ppl_zend     Perceptual path length in Z at path endpoints against cropped image.
        ppl_wend     Perceptual path length in W at path endpoints against cropped image.
    """
    dnnlib.util.Logger(should_flush=True)

    # Validate arguments.
    args = dnnlib.EasyDict(metrics=metrics, num_gpus=gpus, network_pkl=network_pkl, verbose=verbose)
    if not all(metric_main.is_valid_metric(metric) for metric in args.metrics):
        ctx.fail('\n'.join(['--metrics can only contain the following values:'] + metric_main.list_valid_metrics()))
    if not args.num_gpus >= 1:
        ctx.fail('--gpus must be at least 1')

    # Load network.
    if not dnnlib.util.is_url(network_pkl, allow_file_urls=True) and not os.path.isfile(network_pkl):
        ctx.fail('--network must point to a file or URL')
    if args.verbose:
        print(f'Loading network from "{network_pkl}"...')
    with dnnlib.util.open_url(network_pkl, verbose=args.verbose) as f:
        network_dict = legacy.load_network_pkl(f)
        args.G = network_dict['G_ema'] # subclass of torch.nn.Module

    # Initialize dataset options.
    if data is not None:
        args.dataset_kwargs = dnnlib.EasyDict(class_name='training.dataset.ImageFolderDataset', path=data)
    elif network_dict['training_set_kwargs'] is not None:
        args.dataset_kwargs = dnnlib.EasyDict(network_dict['training_set_kwargs'])
    else:
        ctx.fail('Could not look up dataset options; please specify --data')

    # Finalize dataset options.
    args.dataset_kwargs.resolution = args.G.img_resolution
    args.dataset_kwargs.use_labels = (args.G.c_dim != 0)
    if mirror is not None:
        args.dataset_kwargs.xflip = mirror

    # Print dataset options.
    if args.verbose:
        print('Dataset options:')
        print(json.dumps(args.dataset_kwargs, indent=2))

    # Locate run dir.
    args.run_dir = None
    if os.path.isfile(network_pkl):
        pkl_dir = os.path.dirname(network_pkl)
        if os.path.isfile(os.path.join(pkl_dir, 'training_options.json')):
            args.run_dir = pkl_dir

    # Launch processes.
    if args.verbose:
        print('Launching processes...')
    torch.multiprocessing.set_start_method('spawn')
    with tempfile.TemporaryDirectory() as temp_dir:
        if args.num_gpus == 1:
            subprocess_fn(rank=0, args=args, temp_dir=temp_dir)
        else:
            torch.multiprocessing.spawn(fn=subprocess_fn, args=(args, temp_dir), nprocs=args.num_gpus)

#----------------------------------------------------------------------------

if __name__ == "__main__":
    calc_metrics() # pylint: disable=no-value-for-parameter

#----------------------------------------------------------------------------