Spaces:
Running
on
Zero
Running
on
Zero
File size: 13,405 Bytes
73c6f92 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 |
import torch
from model_lib.attention_processor import IPAttnProcessor, IPAttnProcessor_Self, get_mask_from_cross
from diffusers import StableDiffusionPipeline, DDIMScheduler, AutoencoderKL
import tqdm
def get_subject_idx(model,prompt,src_subject,device):
tokenized_prompt = model.tokenizer(prompt,padding="max_length",max_length=model.tokenizer.model_max_length,truncation=True,return_tensors="pt",).to(device)
input_ids = tokenized_prompt['input_ids']
src_subject_idxs = []
for subject,input_id in zip(src_subject,input_ids):
src_subject_token_id = [model.tokenizer.encode(i, add_special_tokens=False)[0] for i in subject.split(' ')]
src_subject_idxs = [i for i, x in enumerate(input_id.tolist()) if x in src_subject_token_id]
return [src_subject_idxs]
def add_function(model):
@torch.no_grad()
def generate_with_adapters(
model,
prompt_embeds,
num_inference_steps,
generator,
t_range=list(range(0,950)),
):
latents = model.prepare_latents(prompt_embeds.shape[0]//2,4,512,512,prompt_embeds.dtype,prompt_embeds.device,generator)
model.scheduler.set_timesteps(num_inference_steps)
iterator = tqdm.tqdm(model.scheduler.timesteps)
mask_ig_prev = None
for i, t in enumerate(iterator):
if not t in t_range:
model.moMA_generator.toggle_enable_flag('cross')
else:
model.moMA_generator.toggle_enable_flag('all')
latent_model_input = torch.cat([latents] * 2)
noise_pred = model.unet(
latent_model_input,
t,
encoder_hidden_states=prompt_embeds,
return_dict=False,
)[0]
# perform guidance
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
noise_pred = noise_pred_uncond + 7.5 * (noise_pred_text - noise_pred_uncond)
latents = model.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
mask_ig_prev = (get_mask_from_cross(model.unet.attn_processors))[latents.shape[0]:]
model.moMA_generator.set_self_mask('self','ig',mask_ig_prev)
model.moMA_generator.set_self_mask('cross',mask=mask_ig_prev.clone().detach())
image = model.vae.decode(latents / model.vae.config.scaling_factor, return_dict=False)[0]
return image ,mask_ig_prev.repeat(1,3,1,1) if (not mask_ig_prev==None) else None
model.generate_with_adapters = generate_with_adapters
class ImageProjModel(torch.nn.Module):
"""Projection Model"""
def __init__(self, cross_attention_dim=1024, clip_embeddings_dim=1024, clip_extra_context_tokens=4):
super().__init__()
self.cross_attention_dim = cross_attention_dim
self.clip_extra_context_tokens = clip_extra_context_tokens
self.proj = torch.nn.Linear(clip_embeddings_dim, self.clip_extra_context_tokens * cross_attention_dim)
self.norm = torch.nn.LayerNorm(cross_attention_dim)
def forward(self, image_embeds):
embeds = image_embeds
clip_extra_context_tokens = self.proj(embeds).reshape(-1, self.clip_extra_context_tokens, self.cross_attention_dim)
clip_extra_context_tokens = self.norm(clip_extra_context_tokens)
return clip_extra_context_tokens
class MoMA_generator:
def __init__(self, device,args):
self.args = args
self.device = device
noise_scheduler = DDIMScheduler(num_train_timesteps=1000,beta_start=0.00085,beta_end=0.012,beta_schedule="scaled_linear",clip_sample=False,set_alpha_to_one=False,steps_offset=1,)
print('Loading VAE: stabilityai--sd-vae-ft-mse...')
vae = AutoencoderKL.from_pretrained("stabilityai/sd-vae-ft-mse")
print('Loading StableDiffusion: Realistic_Vision...')
self.pipe = StableDiffusionPipeline.from_pretrained(
"SG161222/Realistic_Vision_V4.0_noVAE",
torch_dtype=torch.float16,
scheduler=noise_scheduler,
vae=vae,
feature_extractor=None,
safety_checker=None,
).to(self.device)
self.unet = self.pipe.unet
add_function(self.pipe)
self.pipe.moMA_generator = self
self.set_ip_adapter()
self.image_proj_model = self.init_proj()
def init_proj(self):
image_proj_model = ImageProjModel(
cross_attention_dim=768,
clip_embeddings_dim=1024,
clip_extra_context_tokens=4,
).to(self.device, dtype=torch.float16)
return image_proj_model
def set_ip_adapter(self):
unet = self.unet
attn_procs = {}
for name in unet.attn_processors.keys():
cross_attention_dim = None if name.endswith("attn1.processor") else unet.config.cross_attention_dim
if name.startswith("mid_block"):
hidden_size = unet.config.block_out_channels[-1]
elif name.startswith("up_blocks"):
block_id = int(name[len("up_blocks.")])
hidden_size = list(reversed(unet.config.block_out_channels))[block_id]
elif name.startswith("down_blocks"):
block_id = int(name[len("down_blocks.")])
hidden_size = unet.config.block_out_channels[block_id]
if cross_attention_dim is None:
attn_procs[name] = IPAttnProcessor_Self(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4).to(self.device, dtype=torch.float16)
else:
attn_procs[name] = IPAttnProcessor(hidden_size=hidden_size, cross_attention_dim=cross_attention_dim,scale=1.0,num_tokens=4).to(self.device, dtype=torch.float16)
unet.set_attn_processor(attn_procs)
@torch.inference_mode()
def get_image_embeds_CFG(self, llava_emb):
clip_image_embeds = llava_emb
image_prompt_embeds = self.image_proj_model(clip_image_embeds)
uncond_image_prompt_embeds = self.image_proj_model(torch.zeros_like(clip_image_embeds))
return image_prompt_embeds, uncond_image_prompt_embeds
def get_image_crossAttn_feature(
self,
llava_emb,
num_samples=1,
):
image_prompt_embeds, uncond_image_prompt_embeds = self.get_image_embeds_CFG(llava_emb)
bs_embed, seq_len, _ = image_prompt_embeds.shape
image_prompt_embeds = image_prompt_embeds.repeat(1, num_samples, 1)
image_prompt_embeds = image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.repeat(1, num_samples, 1)
uncond_image_prompt_embeds = uncond_image_prompt_embeds.view(bs_embed * num_samples, seq_len, -1)
return image_prompt_embeds, uncond_image_prompt_embeds
# feature are from self-attention layers of Unet: feed reference image to Unet with t=0
def get_image_selfAttn_feature(
self,
pil_image,
prompt,
):
self.toggle_enable_flag('self')
self.toggle_extract_inject_flag('self', 'extract')
tokenized_prompt = self.pipe.tokenizer(prompt,padding="max_length",truncation=True,return_tensors="pt",).to(self.device)
text_embeddings = self.pipe.text_encoder(input_ids=tokenized_prompt.input_ids)[0]
ref_image = pil_image
ref_image.to(self.device)
with torch.no_grad(): latents = self.pipe.vae.encode(ref_image).latent_dist.sample()
latents = latents * self.pipe.vae.config.scaling_factor
noise = torch.randn_like(latents)
timesteps = torch.tensor([0],device=latents.device).long() # fixed to 0
noisy_latents = self.pipe.scheduler.add_noise(latents, noise, timesteps)
_ = self.unet(noisy_latents,timestep=timesteps,encoder_hidden_states=text_embeddings)["sample"]
# features are stored in attn_processors
return None
@torch.no_grad()
def generate_with_MoMA(
self,
batch,
llava_emb=None,
seed=None,
device='cuda',
):
self.reset_all()
img_ig,mask_id,subject,prompt = batch['image'].half().to(device),batch['mask'].half().to(device),batch['label'][0],batch['text'][0]
prompt = [f"photo of a {subject}. "+ prompt]
subject_idx = get_subject_idx(self.pipe,prompt,[subject],self.device)
negative_prompt = None
# get context-cross-attention feature (from MLLM decoder)
cond_llava_embeds, uncond_llava_embeds = self.get_image_crossAttn_feature(llava_emb,num_samples=1)
# get subject-cross-attention feature (from Unet)
self.get_image_selfAttn_feature(img_ig,subject) # features are stored in attn_processors
with torch.inference_mode():
prompt_embeds = self.pipe._encode_prompt(
prompt, device=self.device, num_images_per_prompt=1, do_classifier_free_guidance=True, negative_prompt=negative_prompt)
negative_prompt_embeds_, prompt_embeds_ = prompt_embeds.chunk(2)
prompt_embeds = torch.cat([prompt_embeds_, cond_llava_embeds], dim=1)
negative_prompt_embeds = torch.cat([negative_prompt_embeds_, uncond_llava_embeds], dim=1)
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])
generator = torch.Generator(self.device).manual_seed(seed) if seed is not None else None
self.set_self_mask('eraseAll')
self.toggle_enable_flag('all')
self.toggle_extract_inject_flag('all','masked_generation')
self.set_self_mask('self','id',mask_id)
self.set_cross_subject_idxs(subject_idx)
images, mask = self.pipe.generate_with_adapters(
self.pipe,
prompt_embeds,
50,
generator,
)
images = torch.clip((images+1)/2.0,min=0.0,max=1.0)
return images.cpu(), mask.cpu()
def set_selfAttn_strength(self, strength):
for attn_processor in self.unet.attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.scale = 1.0
if isinstance(attn_processor, IPAttnProcessor_Self):
attn_processor.scale = strength
def set_cross_subject_idxs(self, subject_idxs):
for attn_processor in self.unet.attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.subject_idxs = subject_idxs
def set_self_mask(self,mode,id_ig='', mask=None): #only have effect on self attn of the generation process
for attn_processor in self.unet.attn_processors.values():
if mode == 'eraseAll':
if isinstance(attn_processor, IPAttnProcessor_Self):
attn_processor.mask_id,attn_processor.mask_ig = None,None
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.mask_i, attn_processor.mask_ig_prev = None, None
if mode == 'self':
if isinstance(attn_processor, IPAttnProcessor_Self):
if id_ig == 'id':attn_processor.mask_id = mask
if id_ig == 'ig':attn_processor.mask_ig = mask
if mode == 'cross':
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.mask_ig_prev = mask
def toggle_enable_flag(self, processor_enable_mode):
for attn_processor in self.unet.attn_processors.values():
if processor_enable_mode == 'cross':
if isinstance(attn_processor, IPAttnProcessor):attn_processor.enabled = True
if isinstance(attn_processor, IPAttnProcessor_Self):attn_processor.enabled = False
if processor_enable_mode == 'self':
if isinstance(attn_processor, IPAttnProcessor):attn_processor.enabled = False
if isinstance(attn_processor, IPAttnProcessor_Self):attn_processor.enabled = True
if processor_enable_mode == 'all':
attn_processor.enabled = True
if processor_enable_mode == 'none':
attn_processor.enabled = False
def toggle_extract_inject_flag(self, processor_name, mode): # mode: str, 'extract' or 'inject' or 'both'(cross only)
for attn_processor in self.unet.attn_processors.values():
if processor_name == 'cross':
if isinstance(attn_processor, IPAttnProcessor):attn_processor.mode = mode
if processor_name == 'self':
if isinstance(attn_processor, IPAttnProcessor_Self):attn_processor.mode = mode
if processor_name == 'all':
attn_processor.mode = mode
def reset_all(self,keep_self=False):
for attn_processor in self.unet.attn_processors.values():
if isinstance(attn_processor, IPAttnProcessor):
attn_processor.store_attn, attn_processor.subject_idxs, attn_processor.mask_i, attn_processor.mask_ig_prev, self.subject_idxs = None, None, None, None, None
if isinstance(attn_processor, IPAttnProcessor_Self):
attn_processor.mask_id, attn_processor.mask_ig = None, None
if not keep_self: attn_processor.store_ks, attn_processor.store_vs = [], []
|