File size: 47,343 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
# coding=utf-8
# Copyright 2020 The HuggingFace Inc. team
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

from abc import ABC, abstractmethod
from collections import UserDict
from typing import Dict, List, Optional, Tuple, Union

import numpy as np
import torch

from ..utils import add_start_docstrings
from .beam_constraints import Constraint, ConstraintListState


PROCESS_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
            Current scores of the top `2 * num_beams` non-finished beam hypotheses.
        next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
            `input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
        next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
            Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
        pad_token_id (`int`, *optional*):
            The id of the *padding* token.
        eos_token_id (`Union[int, List[int]]`, *optional*):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
        beam_indices (`torch.LongTensor`, *optional*):
            Beam indices indicating to which beam hypothesis each token correspond.
        group_index (`int`, *optional*):
            The index of the group of beams. Used with [`~PreTrainedModel.group_beam_search`].

    Return:
        `UserDict`: A dictionary composed of the fields as defined above:

            - **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of all
              non-finished beams.
            - **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be added
              to the non-finished beam_hypotheses.
            - **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
              indicating to which beam the next tokens shall be added.

"""

FINALIZE_INPUTS_DOCSTRING = r"""
    Args:
        input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
            Indices of input sequence tokens in the vocabulary.

            Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
            [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.

            [What are input IDs?](../glossary#input-ids)
        final_beam_scores (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
            The final scores of all non-finished beams.
        final_beam_tokens (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
            The last tokens to be added to the non-finished beam_hypotheses.
        final_beam_indices (`torch.FloatTensor` of shape `(batch_size * num_beams)`):
            The beam indices indicating to which beam the `final_beam_tokens` shall be added.
        pad_token_id (`int`, *optional*):
            The id of the *padding* token.
        eos_token_id (`Union[int, List[int]]`, *optional*):
            The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.

    Return:
        `torch.LongTensor` of shape `(batch_size * num_return_sequences, sequence_length)`: The generated sequences.
        The second dimension (sequence_length) is either equal to `max_length` or shorter if all batches finished early
        due to the `eos_token_id`.

"""


class BeamScorer(ABC):
    """
    Abstract base class for all beam scorers that are used for [`~PreTrainedModel.beam_search`] and
    [`~PreTrainedModel.beam_sample`].
    """

    @abstractmethod
    @add_start_docstrings(PROCESS_INPUTS_DOCSTRING)
    def process(
        self,
        input_ids: torch.LongTensor,
        next_scores: torch.FloatTensor,
        next_tokens: torch.LongTensor,
        next_indices: torch.LongTensor,
        **kwargs,
    ) -> Tuple[torch.Tensor]:
        raise NotImplementedError("This is an abstract method.")

    @abstractmethod
    @add_start_docstrings(FINALIZE_INPUTS_DOCSTRING)
    def finalize(
        self,
        input_ids: torch.LongTensor,
        next_scores: torch.FloatTensor,
        next_tokens: torch.LongTensor,
        next_indices: torch.LongTensor,
        max_length: int,
        **kwargs,
    ) -> torch.LongTensor:
        raise NotImplementedError("This is an abstract method.")


class BeamSearchScorer(BeamScorer):
    r"""
    [`BeamScorer`] implementing standard beam search decoding.

    Adapted in part from [Facebook's XLM beam search
    code](https://github.com/facebookresearch/XLM/blob/9e6f6814d17be4fe5b15f2e6c43eb2b2d76daeb4/src/model/transformer.py#L529).

    Reference for the diverse beam search algorithm and implementation [Ashwin Kalyan's DBS
    implementation](https://github.com/ashwinkalyan/dbs/blob/master/dbs/beam_utils.lua)

    Args:
        batch_size (`int`):
            Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
        num_beams (`int`):
            Number of beams for beam search.
        device (`torch.device`):
            Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
            allocated.
        length_penalty (`float`, *optional*, defaults to 1.0):
            Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
            the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
            likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
            `length_penalty` < 0.0 encourages shorter sequences.
        do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
            Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
            `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
            heuristic is applied and the generation stops when is it very unlikely to find better candidates;
            `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
            beam search algorithm).
        num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
            The number of beam hypotheses that shall be returned upon calling
            [`~transformer.BeamSearchScorer.finalize`].
        num_beam_groups (`int`, *optional*, defaults to 1):
            Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
            See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
        max_length (`int`, *optional*):
            The maximum length of the sequence to be generated.
    """

    def __init__(
        self,
        batch_size: int,
        num_beams: int,
        device: torch.device,
        length_penalty: Optional[float] = 1.0,
        do_early_stopping: Optional[Union[bool, str]] = False,
        num_beam_hyps_to_keep: Optional[int] = 1,
        num_beam_groups: Optional[int] = 1,
        max_length: Optional[int] = None,
    ):
        self.num_beams = num_beams
        self.device = device
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
        self.num_beam_groups = num_beam_groups
        self.group_size = self.num_beams // self.num_beam_groups

        self._is_init = False
        # self._beam_hyps[i*self.num_beam_groups+j] is the beam_hyps of the j-th group in the i-th mini-batch.
        # If group_beam_search is not used, the list consists of `batch_size` beam_hyps.
        self._beam_hyps = [
            BeamHypotheses(
                num_beams=self.group_size,
                length_penalty=self.length_penalty,
                early_stopping=self.do_early_stopping,
                max_length=max_length,
            )
            for _ in range(batch_size * self.num_beam_groups)
        ]
        # self._done[i*self.num_beam_groups+j] indicates whether the generation of the beam_hyps of the j-th group
        # in the i-th mini-batch is complete.
        self._done = torch.tensor(
            [False for _ in range(batch_size * self.num_beam_groups)], dtype=torch.bool, device=self.device
        )

        if not isinstance(num_beams, int) or num_beams <= 1:
            raise ValueError(
                f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
                " one should make use of `greedy_search` instead."
            )

        if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
            raise ValueError(
                "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
                f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
            )

    @property
    def is_done(self) -> bool:
        return self._done.all()

    def process(
        self,
        input_ids: torch.LongTensor,
        next_scores: torch.FloatTensor,
        next_tokens: torch.LongTensor,
        next_indices: torch.LongTensor,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[torch.LongTensor] = None,
        group_index: Optional[int] = 0,
    ) -> Dict[str, torch.Tensor]:
        cur_len = input_ids.shape[-1] + 1  # add up to the length which the next_scores is calculated on
        batch_size = len(self._beam_hyps) // self.num_beam_groups

        if not (batch_size == (input_ids.shape[0] // self.group_size)):
            if self.num_beam_groups > 1:
                raise ValueError(
                    f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
                    f"size of {self.group_size} is expected by the beam scorer."
                )
            else:
                raise ValueError(
                    f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
                    f"{self.group_size} is expected by the beam scorer."
                )

        device = input_ids.device
        next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
        next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
        next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        for batch_idx in range(batch_size):
            batch_group_idx = batch_idx * self.num_beam_groups + group_index
            if self._done[batch_group_idx]:
                if self.num_beams < len(self._beam_hyps[batch_group_idx]):
                    raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
                if eos_token_id is None or pad_token_id is None:
                    raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
                # pad the batch
                next_beam_scores[batch_idx, :] = 0
                next_beam_tokens[batch_idx, :] = pad_token_id
                next_beam_indices[batch_idx, :] = 0
                continue

            # next tokens for this sentence
            beam_idx = 0
            for beam_token_rank, (next_token, next_score, next_index) in enumerate(
                zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
            ):
                batch_beam_idx = batch_idx * self.group_size + next_index
                # add to generated hypotheses if end of sentence
                if (eos_token_id is not None) and (next_token.item() in eos_token_id):
                    # if beam_token does not belong to top num_beams tokens, it should not be added
                    is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
                    if is_beam_token_worse_than_top_num_beams:
                        continue
                    if beam_indices is not None:
                        beam_index = beam_indices[batch_beam_idx]
                        beam_index = beam_index + (batch_beam_idx,)
                    else:
                        beam_index = None

                    self._beam_hyps[batch_group_idx].add(
                        input_ids[batch_beam_idx].clone(),
                        next_score.item(),
                        beam_indices=beam_index,
                    )
                else:
                    # add next predicted token since it is not eos_token
                    next_beam_scores[batch_idx, beam_idx] = next_score
                    next_beam_tokens[batch_idx, beam_idx] = next_token
                    next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
                    beam_idx += 1

                # once the beam for next step is full, don't add more tokens to it.
                if beam_idx == self.group_size:
                    break

            if beam_idx < self.group_size:
                raise ValueError(
                    f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
                    f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
                )

            # Check if we are done so that we can save a pad step if all(done)
            self._done[batch_group_idx] = self._done[batch_group_idx] or self._beam_hyps[batch_group_idx].is_done(
                next_scores[batch_idx].max().item(), cur_len
            )

        return UserDict(
            {
                "next_beam_scores": next_beam_scores.view(-1),
                "next_beam_tokens": next_beam_tokens.view(-1),
                "next_beam_indices": next_beam_indices.view(-1),
            }
        )

    def finalize(
        self,
        input_ids: torch.LongTensor,
        final_beam_scores: torch.FloatTensor,
        final_beam_tokens: torch.LongTensor,
        final_beam_indices: torch.LongTensor,
        max_length: int,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.LongTensor]:
        batch_size = len(self._beam_hyps) // self.num_beam_groups

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        # finalize all open beam hypotheses and add to generated hypotheses
        for batch_group_idx, beam_hyp in enumerate(self._beam_hyps):
            if self._done[batch_group_idx]:
                continue

            # all open beam hypotheses are added to the beam hypothesis
            # beam hypothesis class automatically keeps the best beams
            for index_per_group in range(self.group_size):
                batch_beam_idx = batch_group_idx * self.group_size + index_per_group
                final_score = final_beam_scores[batch_beam_idx].item()
                final_tokens = input_ids[batch_beam_idx]
                beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
                beam_hyp.add(final_tokens, final_score, beam_indices=beam_index)

        # select the best hypotheses
        sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
        best = []
        best_indices = []
        best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)

        # retrieve best hypotheses
        for i in range(batch_size):
            beam_hyps_in_batch = self._beam_hyps[i * self.num_beam_groups : (i + 1) * self.num_beam_groups]
            candidate_beams = [beam for beam_hyp in beam_hyps_in_batch for beam in beam_hyp.beams]
            sorted_hyps = sorted(candidate_beams, key=lambda x: x[0])
            for j in range(self.num_beam_hyps_to_keep):
                best_hyp_tuple = sorted_hyps.pop()
                best_score = best_hyp_tuple[0]
                best_hyp = best_hyp_tuple[1]
                best_index = best_hyp_tuple[2]
                sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)

                # append hyp to lists
                best.append(best_hyp)

                # append indices to list
                best_indices.append(best_index)

                best_scores[i * self.num_beam_hyps_to_keep + j] = best_score

        # prepare for adding eos
        sent_lengths_max = sent_lengths.max().item() + 1
        sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
        decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)

        if len(best_indices) > 0 and best_indices[0] is not None:
            indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
        else:
            indices = None

        # shorter batches are padded if needed
        if sent_lengths.min().item() != sent_lengths.max().item():
            if pad_token_id is None:
                raise ValueError("`pad_token_id` has to be defined")
            decoded.fill_(pad_token_id)

        if indices is not None:
            indices.fill_(-1)

        # fill with hypotheses and eos_token_id if the latter fits in
        for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
            decoded[i, : sent_lengths[i]] = hypo

            if indices is not None:
                indices[i, : len(best_idx)] = torch.tensor(best_idx)

            if sent_lengths[i] < sent_max_len:
                # inserting only the first eos_token_id
                decoded[i, sent_lengths[i]] = eos_token_id[0]

        return UserDict(
            {
                "sequences": decoded,
                "sequence_scores": best_scores,
                "beam_indices": indices,
            }
        )


class ConstrainedBeamSearchScorer(BeamScorer):
    r"""
    [`BeamScorer`] implementing constrained beam search decoding.


    Args:
        batch_size (`int`):
            Batch Size of `input_ids` for which standard beam search decoding is run in parallel.
        num_beams (`int`):
            Number of beams for beam search.
        constraints (`List[Constraint]`):
            A list of positive constraints represented as `Constraint` objects that must be fulfilled in the generation
            output. For more information, the documentation of [`Constraint`] should be read.
        device (`torch.device`):
            Defines the device type (*e.g.*, `"cpu"` or `"cuda"`) on which this instance of `BeamSearchScorer` will be
            allocated.
        length_penalty (`float`, *optional*, defaults to 1.0):
            Exponential penalty to the length that is used with beam-based generation. It is applied as an exponent to
            the sequence length, which in turn is used to divide the score of the sequence. Since the score is the log
            likelihood of the sequence (i.e. negative), `length_penalty` > 0.0 promotes longer sequences, while
            `length_penalty` < 0.0 encourages shorter sequences.
        do_early_stopping (`bool` or `str`, *optional*, defaults to `False`):
            Controls the stopping condition for beam-based methods, like beam-search. It accepts the following values:
            `True`, where the generation stops as soon as there are `num_beams` complete candidates; `False`, where an
            heuristic is applied and the generation stops when is it very unlikely to find better candidates;
            `"never"`, where the beam search procedure only stops when there cannot be better candidates (canonical
            beam search algorithm).
        num_beam_hyps_to_keep (`int`, *optional*, defaults to 1):
            The number of beam hypotheses that shall be returned upon calling
            [`~transformer.BeamSearchScorer.finalize`].
        num_beam_groups (`int`, *optional*, defaults to 1):
            Number of groups to divide `num_beams` into in order to ensure diversity among different groups of beams.
            See [this paper](https://arxiv.org/pdf/1610.02424.pdf) for more details.
        max_length (`int`, *optional*):
            The maximum length of the sequence to be generated.
    """

    def __init__(
        self,
        batch_size: int,
        num_beams: int,
        constraints: List[Constraint],
        device: torch.device,
        length_penalty: Optional[float] = 1.0,
        do_early_stopping: Optional[Union[bool, str]] = False,
        num_beam_hyps_to_keep: Optional[int] = 1,
        num_beam_groups: Optional[int] = 1,
        max_length: Optional[int] = None,
    ):
        self.num_beams = num_beams
        self.device = device
        self.length_penalty = length_penalty
        self.do_early_stopping = do_early_stopping
        self.num_beam_hyps_to_keep = num_beam_hyps_to_keep
        self.num_beam_groups = num_beam_groups
        self.group_size = self.num_beams // self.num_beam_groups
        self.constraints = constraints

        self._is_init = False
        self._beam_hyps = [
            BeamHypotheses(
                num_beams=self.num_beams,
                length_penalty=self.length_penalty,
                early_stopping=self.do_early_stopping,
                max_length=max_length,
            )
            for _ in range(batch_size)
        ]
        self._done = torch.tensor([False for _ in range(batch_size)], dtype=torch.bool, device=self.device)

        if not isinstance(num_beams, int) or num_beams <= 1:
            raise ValueError(
                f"`num_beams` has to be an integer strictly greater than 1, but is {num_beams}. For `num_beams` == 1,"
                " one should make use of `greedy_search` instead."
            )

        if not isinstance(num_beam_groups, int) or (num_beam_groups > num_beams) or (num_beams % num_beam_groups != 0):
            raise ValueError(
                "`num_beam_groups` has to be an integer smaller or equal than `num_beams` and `num_beams` has to be"
                f" divisible by `num_beam_groups`, but is {num_beam_groups} with `num_beams` being {num_beams}."
            )

    @property
    def is_done(self) -> bool:
        return self._done.all()

    def make_constraint_states(self, n):
        return [ConstraintListState([constraint.copy() for constraint in self.constraints]) for _ in range(n)]

    def check_completes_constraints(self, sequence):
        new_state = self.make_constraint_states(1)[0]
        new_state.reset(sequence)
        return new_state.completed

    def process(
        self,
        input_ids: torch.LongTensor,
        next_scores: torch.FloatTensor,
        next_tokens: torch.LongTensor,
        next_indices: torch.LongTensor,
        scores_for_all_vocab: torch.FloatTensor,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.Tensor]:
        r"""
        Args:
            input_ids (`torch.LongTensor` of shape `(batch_size * num_beams, sequence_length)`):
                Indices of input sequence tokens in the vocabulary.

                Indices can be obtained using any class inheriting from [`PreTrainedTokenizer`]. See
                [`PreTrainedTokenizer.encode`] and [`PreTrainedTokenizer.__call__`] for details.

                [What are input IDs?](../glossary#input-ids)
            next_scores (`torch.FloatTensor` of shape `(batch_size, 2 * num_beams)`):
                Current scores of the top `2 * num_beams` non-finished beam hypotheses.
            next_tokens (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
                `input_ids` of the tokens corresponding to the top `2 * num_beams` non-finished beam hypotheses.
            next_indices (`torch.LongTensor` of shape `(batch_size, 2 * num_beams)`):
                Beam indices indicating to which beam hypothesis the `next_tokens` correspond.
            scores_for_all_vocab (`torch.FloatTensor` of shape `(batch_size * num_beams, sequence_length)`):
                The scores of all tokens in the vocabulary for each of the beam hypotheses.
            pad_token_id (`int`, *optional*):
                The id of the *padding* token.
            eos_token_id (`Union[int, List[int]]`, *optional*):
                The id of the *end-of-sequence* token. Optionally, use a list to set multiple *end-of-sequence* tokens.
            beam_indices (`torch.LongTensor`, *optional*):
                Beam indices indicating to which beam hypothesis each token correspond.

        Return:
            `UserDict`: A dictionary composed of the fields as defined above:

                - **next_beam_scores** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Updated scores of
                  all
                non-finished beams.

                - **next_beam_tokens** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Next tokens to be
                  added
                to the non-finished beam_hypotheses.
                - **next_beam_indices** (`torch.FloatTensor` of shape `(batch_size * num_beams)`) -- Beam indices
                indicating to which beam the next tokens shall be added.
        """

        cur_len = input_ids.shape[-1] + 1  # add up to the length which the next_scores is calculated on
        batch_size = len(self._beam_hyps)
        if not (batch_size == (input_ids.shape[0] // self.group_size)):
            if self.num_beam_groups > 1:
                raise ValueError(
                    f"A group beam size of {input_ids.shape[0]} is used as the input, but a group beam "
                    f"size of {self.group_size} is expected by the beam scorer."
                )
            else:
                raise ValueError(
                    f"A beam size of {input_ids.shape[0]} is used as the input, but a beam size of "
                    f"{self.group_size} is expected by the beam scorer."
                )

        device = input_ids.device

        next_beam_scores = torch.zeros((batch_size, self.group_size), dtype=next_scores.dtype, device=device)
        next_beam_tokens = torch.zeros((batch_size, self.group_size), dtype=next_tokens.dtype, device=device)
        next_beam_indices = torch.zeros((batch_size, self.group_size), dtype=next_indices.dtype, device=device)

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        for batch_idx, beam_hyp in enumerate(self._beam_hyps):
            if self._done[batch_idx]:
                if self.num_beams < len(beam_hyp):
                    raise ValueError(f"Batch can only be done if at least {self.num_beams} beams have been generated")
                if eos_token_id is None or pad_token_id is None:
                    raise ValueError("Generated beams >= num_beams -> eos_token_id and pad_token have to be defined")
                # pad the batch
                next_beam_scores[batch_idx, :] = 0
                next_beam_tokens[batch_idx, :] = pad_token_id
                next_beam_indices[batch_idx, :] = 0
                continue

            # next tokens for this sentence.
            beam_idx = 0
            for beam_token_rank, (next_token, next_score, next_index) in enumerate(
                zip(next_tokens[batch_idx], next_scores[batch_idx], next_indices[batch_idx])
            ):
                batch_beam_idx = batch_idx * self.group_size + next_index
                # add to generated hypotheses if end of sentence
                if (eos_token_id is not None) and (next_token.item() in eos_token_id):
                    # if beam_token does not belong to top num_beams tokens, it should not be added
                    is_beam_token_worse_than_top_num_beams = beam_token_rank >= self.group_size
                    if is_beam_token_worse_than_top_num_beams:
                        continue

                    completes_constraint = self.check_completes_constraints(input_ids[batch_beam_idx].cpu().tolist())
                    if completes_constraint:
                        if beam_indices is not None:
                            beam_index = beam_indices[batch_beam_idx]
                            beam_index = beam_index + (batch_beam_idx,)
                        else:
                            beam_index = None

                        beam_hyp.add(
                            input_ids[batch_beam_idx].clone(),
                            next_score.item(),
                            beam_indices=beam_index,
                        )
                else:
                    # add next predicted token since it is not eos_token
                    next_beam_scores[batch_idx, beam_idx] = next_score
                    next_beam_tokens[batch_idx, beam_idx] = next_token
                    next_beam_indices[batch_idx, beam_idx] = batch_beam_idx
                    beam_idx += 1

                # once the beam for next step is full, don't add more tokens to it.
                if beam_idx == self.group_size:
                    break

            new_scores, new_tokens, new_indices = self.step_sentence_constraint(
                batch_idx,
                input_ids,
                scores_for_all_vocab,
                next_beam_scores[batch_idx],
                next_beam_tokens[batch_idx],
                next_beam_indices[batch_idx],
            )

            next_beam_scores[batch_idx] = new_scores
            next_beam_tokens[batch_idx] = new_tokens
            next_beam_indices[batch_idx] = new_indices

            if beam_idx < self.group_size:
                raise ValueError(
                    f"At most {self.group_size} tokens in {next_tokens[batch_idx]} can be equal to `eos_token_id:"
                    f" {eos_token_id}`. Make sure {next_tokens[batch_idx]} are corrected."
                )

            # Check if we are done so that we can save a pad step if all(done)
            self._done[batch_idx] = self._done[batch_idx] or beam_hyp.is_done(
                next_scores[batch_idx].max().item(), cur_len
            )

        return UserDict(
            {
                "next_beam_scores": next_beam_scores.view(-1),
                "next_beam_tokens": next_beam_tokens.view(-1),
                "next_beam_indices": next_beam_indices.view(-1),
            }
        )

    def step_sentence_constraint(
        self,
        batch_idx: int,
        input_ids: torch.LongTensor,
        vocab_scores: torch.FloatTensor,
        sent_beam_scores: torch.FloatTensor,
        sent_beam_tokens: torch.LongTensor,
        sent_beam_indices: torch.LongTensor,
        push_progress: bool = False,
    ):
        # sent_beam_tokens are the next {num_beams} number of tokens that are under consideration for this beam
        # (candidate next tokens)

        # 1. Adding "advance_tokens"
        #     using ConstraintStateList.advance(), we propose new tokens to be added into this "candidate list" that will
        #     advance us in fulfilling the constraints.

        # 2. Selecting best candidates such that we end up with highest probable candidates
        #     that fulfill our constraints.

        orig_len = sent_beam_indices.size(0)
        device = sent_beam_indices.device

        # initialize states
        topk_contraint_states = self.make_constraint_states(orig_len)
        advance_constraint_states = self.make_constraint_states(orig_len)

        sidx, eidx = batch_idx * orig_len, (batch_idx + 1) * orig_len
        this_batch_input_ids = input_ids[sidx:eidx]
        this_batch_token_scores = vocab_scores[sidx:eidx]
        full_hypotheses = torch.cat((input_ids[sent_beam_indices], sent_beam_tokens.unsqueeze(-1)), dim=-1)

        # need to make new hypothesis that advance the constraints
        track_new = {
            "new_seqs": full_hypotheses.tolist(),
            "new_states": [],
            "new_indices": [],
            "new_tokens": [],
            "new_scores": [],
        }
        for seq_idx, pre_seq in enumerate(this_batch_input_ids):
            # pre_seq = ith sequence generated before this step.

            # input_ids -> (topk) generic beam search best model next tokens
            #           -> (advance) constraints forcing the next token
            # either way, we need to sort them into "banks" later, so store a "ConstraintListState" for all types of
            # hypotheses.

            topk_state = topk_contraint_states[seq_idx]
            topk_state.reset(full_hypotheses[seq_idx].cpu().tolist())

            advance_state = advance_constraint_states[seq_idx]
            advance_state.reset(pre_seq.cpu().tolist())

            if not advance_state.completed:
                advance_tokens = torch.LongTensor(advance_state.advance()).to(device)
                for advance_token in advance_tokens:
                    # since adding each `advance_token` leads to a different hypothesis, create new state instance.
                    new_state = advance_state.copy(stateful=True)
                    new_state.add(advance_token.cpu().tolist())

                    advance_seq = torch.cat((pre_seq, advance_token.unsqueeze(0)), -1).cpu().tolist()
                    if advance_seq not in track_new["new_seqs"]:
                        # prevent duplicates, which are basically bound to happen in this process.
                        track_new["new_seqs"].append(advance_seq)
                        track_new["new_indices"].append(sidx + seq_idx)  # idx -> global idx across all the batches
                        track_new["new_tokens"].append(advance_token)
                        track_new["new_scores"].append(this_batch_token_scores[seq_idx].take(advance_token))
                        track_new["new_states"].append(new_state)
            elif push_progress:
                # Basically, `sent_beam_indices` often chooses very little among `input_ids` the generated sequences that
                # actually fulfill our constraints. For example, let constraints == ["loves pies"] and

                #     pre_seq_1 = "The child loves pies and" pre_seq_2 = "The child plays in the playground and"

                # Without this step, if `sent_beam_indices` is something like [1,1], then
                #     1. `pre_seq_1` won't be added to the list of (topk) hypothesis since it's not in the indices and
                #     2.  it won't be added to the list of (advance) hypothesis since it's completed already. (this is
                #         the else part of `if constraints_completed[seq_idx]`)
                #     3. it ends up simply getting removed from consideration.

                # #3 might be fine and actually desired, since it's likely that it's a low-probability output anyways,
                # especially if it's not in the list of `sent_beam_indices`. But this often leads to lengthened beam
                # search times, since completed sequences keep getting removed after all this effort for constrained
                # generation.

                # Here, we basically take `pre_seq_1` and to "push" it into the considered list of hypotheses, by simply
                # appending the next likely token in the vocabulary and adding it to the list of hypotheses.

                new_score, new_token = torch.max(this_batch_token_scores[seq_idx], 0)  # some next probable token
                advance_seq = torch.cat((pre_seq, new_token.unsqueeze(0)), -1)

                advance_state = advance_constraint_states[seq_idx]

                advance_seq = advance_seq.cpu().tolist()

                advance_state.reset(advance_seq)
                if advance_seq not in track_new["new_seqs"]:
                    # but still don't want to have duplicates
                    track_new["new_seqs"].append(advance_seq)
                    track_new["new_indices"].append(seq_idx)
                    track_new["new_tokens"].append(new_token)
                    track_new["new_scores"].append(new_score)
                    track_new["new_states"].append(advance_state)

        if len(track_new["new_indices"]) > 0:
            new_indices = torch.tensor(track_new["new_indices"]).to(device)
            new_tokens = torch.stack(track_new["new_tokens"]).to(device)
            new_scores = torch.stack(track_new["new_scores"]).to(device)

            all_states = topk_contraint_states + track_new["new_states"]
            all_tokens = torch.cat((sent_beam_tokens, new_tokens), -1)
            all_scores = torch.cat((sent_beam_scores, new_scores), -1)
            all_banks = torch.tensor([one.get_bank() for one in all_states]).to(device)

            zipped = all_banks * 100 + all_scores
            indices = zipped.sort(descending=True).indices
            sorted_banks = all_banks[indices]

            # Then we end up with {sorted among bank C}, {sorted among bank C-1}, ..., {sorted among bank 0}

            counter = -1
            cur_bank = sorted_banks[0]
            increments = []
            for bank in sorted_banks:
                if bank == cur_bank:
                    counter += 1
                else:
                    counter = 0
                    cur_bank = bank
                increments.append(counter)
            rearrangers = torch.tensor(np.argsort(increments, kind="mergesort"))

            indices = indices[rearrangers][:orig_len]

            sent_beam_scores = all_scores[indices]
            sent_beam_tokens = all_tokens[indices]
            sent_beam_indices = torch.cat((sent_beam_indices, new_indices))[indices]

        return sent_beam_scores, sent_beam_tokens, sent_beam_indices

    def finalize(
        self,
        input_ids: torch.LongTensor,
        final_beam_scores: torch.FloatTensor,
        final_beam_tokens: torch.LongTensor,
        final_beam_indices: torch.LongTensor,
        max_length: int,
        pad_token_id: Optional[int] = None,
        eos_token_id: Optional[Union[int, List[int]]] = None,
        beam_indices: Optional[torch.LongTensor] = None,
    ) -> Tuple[torch.LongTensor]:
        batch_size = len(self._beam_hyps)

        if isinstance(eos_token_id, int):
            eos_token_id = [eos_token_id]

        # finalize all open beam hypotheses and add to generated hypotheses
        for batch_idx, beam_hyp in enumerate(self._beam_hyps):
            if self._done[batch_idx]:
                continue

            # all open beam hypotheses are added to the beam hypothesis
            # beam hypothesis class automatically keeps the best beams

            ids_collect = []
            for beam_id in range(self.num_beams):
                batch_beam_idx = batch_idx * self.num_beams + beam_id
                final_score = final_beam_scores[batch_beam_idx].item()
                final_tokens = input_ids[batch_beam_idx]

                completes_constraint = self.check_completes_constraints(final_tokens.cpu().tolist())
                if completes_constraint:
                    beam_index = beam_indices[batch_beam_idx] if beam_indices is not None else None
                    beam_hyp.add(final_tokens, final_score, beam_indices=beam_index)
                    ids_collect.append(beam_id)

            # due to overly complex constraints or other factors, sometimes we can't gaurantee a successful
            # generation. In these cases we simply return the highest scoring outputs.
            if len(ids_collect) < self.num_beam_hyps_to_keep:
                for beam_id in range(self.num_beams):
                    if beam_id not in ids_collect:
                        batch_beam_idx = batch_idx * self.num_beams + beam_id
                        final_score = final_beam_scores[batch_beam_idx].item()
                        final_tokens = input_ids[batch_beam_idx]
                        beam_hyp.add(final_tokens, final_score)
                    if len(ids_collect) >= self.num_beam_hyps_to_keep:
                        break

        # select the best hypotheses
        sent_lengths = input_ids.new(batch_size * self.num_beam_hyps_to_keep)
        best = []
        best_indices = []
        best_scores = torch.zeros(batch_size * self.num_beam_hyps_to_keep, device=self.device, dtype=torch.float32)

        # retrieve best hypotheses
        for i, beam_hyp in enumerate(self._beam_hyps):
            sorted_hyps = sorted(beam_hyp.beams, key=lambda x: x[0])
            for j in range(self.num_beam_hyps_to_keep):
                best_hyp_tuple = sorted_hyps.pop()
                best_score = best_hyp_tuple[0]
                best_hyp = best_hyp_tuple[1]
                best_index = best_hyp_tuple[2]
                sent_lengths[self.num_beam_hyps_to_keep * i + j] = len(best_hyp)

                # append to lists
                best.append(best_hyp)

                # append indices to list
                best_indices.append(best_index)

                best_scores[i * self.num_beam_hyps_to_keep + j] = best_score

        # prepare for adding eos
        sent_lengths_max = sent_lengths.max().item() + 1

        sent_max_len = min(sent_lengths_max, max_length) if max_length is not None else sent_lengths_max
        decoded: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)

        if len(best_indices) > 0 and best_indices[0] is not None:
            indices: torch.LongTensor = input_ids.new(batch_size * self.num_beam_hyps_to_keep, sent_max_len)
        else:
            indices = None

        # shorter batches are padded if needed
        if sent_lengths.min().item() != sent_lengths.max().item():
            if pad_token_id is None:
                raise ValueError("`pad_token_id` has to be defined")
            decoded.fill_(pad_token_id)

        if indices is not None:
            indices.fill_(-1)

        # fill with hypotheses and eos_token_id if the latter fits in
        for i, (hypo, best_idx) in enumerate(zip(best, best_indices)):
            decoded[i, : sent_lengths[i]] = hypo

            if indices is not None:
                indices[i, : len(best_idx)] = torch.tensor(best_idx)

            if sent_lengths[i] < sent_max_len:
                # inserting only the first eos_token_id
                decoded[i, sent_lengths[i]] = eos_token_id[0]

        return UserDict(
            {
                "sequences": decoded,
                "sequence_scores": best_scores,
                "beam_indices": indices,
            }
        )


class BeamHypotheses:
    def __init__(self, num_beams: int, length_penalty: float, early_stopping: bool, max_length: Optional[int] = None):
        """
        Initialize n-best list of hypotheses.
        """
        self.length_penalty = length_penalty
        self.early_stopping = early_stopping
        self.max_length = max_length
        self.num_beams = num_beams
        self.beams = []
        self.worst_score = 1e9

        if not isinstance(self.early_stopping, bool) and self.max_length is None:
            raise ValueError(
                "When `do_early_stopping` is set to a string, `max_length` must be defined. Ensure it is passed to the"
                " BeamScorer class instance at initialization time."
            )

    def __len__(self):
        """
        Number of hypotheses in the list.
        """
        return len(self.beams)

    def add(self, hyp: torch.LongTensor, sum_logprobs: float, beam_indices: Optional[torch.LongTensor] = None):
        """
        Add a new hypothesis to the list.
        """
        score = sum_logprobs / (hyp.shape[-1] ** self.length_penalty)
        if len(self) < self.num_beams or score > self.worst_score:
            self.beams.append((score, hyp, beam_indices))
            if len(self) > self.num_beams:
                sorted_next_scores = sorted([(s, idx) for idx, (s, _, _) in enumerate(self.beams)])
                del self.beams[sorted_next_scores[0][1]]
                self.worst_score = sorted_next_scores[1][0]
            else:
                self.worst_score = min(score, self.worst_score)

    def is_done(self, best_sum_logprobs: float, cur_len: int) -> bool:
        """
        If there are enough hypotheses and that none of the hypotheses being generated can become better than the worst
        one in the heap, then we are done with this sentence.
        """

        if len(self) < self.num_beams:
            return False

        # `True`: stop as soon as at least `num_beams` hypotheses are finished
        if self.early_stopping is True:
            return True
        # `False`: heuristic -- compute best possible score from `cur_len`, even though it is not entirely accurate
        #  when `length_penalty` is positive. See the discussion below for more details.
        # https://github.com/huggingface/transformers/pull/20901#issuecomment-1369845565
        elif self.early_stopping is False:
            highest_attainable_score = best_sum_logprobs / cur_len**self.length_penalty
            ret = self.worst_score >= highest_attainable_score
            return ret
        # `"never"`: compute the best possible score, depending on the signal of `length_penalty`
        else:
            # `length_penalty` > 0.0 -> max denominator is obtaned from `max_length`, not from `cur_len` -> min
            # abs(`highest_attainable_score`) is obtained -> `highest_attainable_score` is negative, hence we obtain
            # its max this way
            if self.length_penalty > 0.0:
                highest_attainable_score = best_sum_logprobs / self.max_length**self.length_penalty
            # the opposite logic applies here (max `highest_attainable_score` from `cur_len`)
            else:
                highest_attainable_score = best_sum_logprobs / cur_len**self.length_penalty
            ret = self.worst_score >= highest_attainable_score
            return ret