File size: 21,258 Bytes
1ce5e18
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
# Copyright 2021 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import warnings
from inspect import signature
from itertools import chain
from pathlib import Path
from typing import TYPE_CHECKING, Iterable, List, Tuple, Union

import numpy as np
from packaging.version import Version, parse

from ..tokenization_utils_base import PreTrainedTokenizerBase
from ..utils import (
    TensorType,
    is_tf_available,
    is_torch_available,
    logging,
)
from .config import OnnxConfig


if is_torch_available():
    from ..modeling_utils import PreTrainedModel
    from ..pytorch_utils import is_torch_less_than_1_11

if is_tf_available():
    from ..modeling_tf_utils import TFPreTrainedModel

if TYPE_CHECKING:
    from ..feature_extraction_utils import FeatureExtractionMixin
    from ..processing_utils import ProcessorMixin
    from ..tokenization_utils import PreTrainedTokenizer


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name


# This is the minimal required version to support some ONNX Runtime features
ORT_QUANTIZE_MINIMUM_VERSION = parse("1.4.0")


def check_onnxruntime_requirements(minimum_version: Version):
    """
    Check onnxruntime is installed and if the installed version match is recent enough

    Raises:
        ImportError: If onnxruntime is not installed or too old version is found
    """
    try:
        import onnxruntime

        # Parse the version of the installed onnxruntime
        ort_version = parse(onnxruntime.__version__)

        # We require 1.4.0 minimum
        if ort_version < ORT_QUANTIZE_MINIMUM_VERSION:
            raise ImportError(
                f"We found an older version of onnxruntime ({onnxruntime.__version__}) "
                f"but we require onnxruntime to be >= {minimum_version} to enable all the conversions options.\n"
                "Please update onnxruntime by running `pip install --upgrade onnxruntime`"
            )

    except ImportError:
        raise ImportError(
            "onnxruntime doesn't seem to be currently installed. "
            "Please install the onnxruntime by running `pip install onnxruntime`"
            " and relaunch the conversion."
        )


def export_pytorch(
    preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"],
    model: "PreTrainedModel",
    config: OnnxConfig,
    opset: int,
    output: Path,
    tokenizer: "PreTrainedTokenizer" = None,
    device: str = "cpu",
) -> Tuple[List[str], List[str]]:
    """
    Export a PyTorch model to an ONNX Intermediate Representation (IR)

    Args:
        preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]):
            The preprocessor used for encoding the data.
        model ([`PreTrainedModel`]):
            The model to export.
        config ([`~onnx.config.OnnxConfig`]):
            The ONNX configuration associated with the exported model.
        opset (`int`):
            The version of the ONNX operator set to use.
        output (`Path`):
            Directory to store the exported ONNX model.
        device (`str`, *optional*, defaults to `cpu`):
            The device on which the ONNX model will be exported. Either `cpu` or `cuda`.

    Returns:
        `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
        the ONNX configuration.
    """

    if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
        raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.")
    if tokenizer is not None:
        warnings.warn(
            "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
            " `preprocessor` instead.",
            FutureWarning,
        )
        logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
        preprocessor = tokenizer

    if issubclass(type(model), PreTrainedModel):
        import torch
        from torch.onnx import export as onnx_export

        logger.info(f"Using framework PyTorch: {torch.__version__}")
        with torch.no_grad():
            model.config.return_dict = True
            model.eval()

            # Check if we need to override certain configuration item
            if config.values_override is not None:
                logger.info(f"Overriding {len(config.values_override)} configuration item(s)")
                for override_config_key, override_config_value in config.values_override.items():
                    logger.info(f"\t- {override_config_key} -> {override_config_value}")
                    setattr(model.config, override_config_key, override_config_value)

            # Ensure inputs match
            # TODO: Check when exporting QA we provide "is_pair=True"
            model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.PYTORCH)
            device = torch.device(device)
            if device.type == "cuda" and torch.cuda.is_available():
                model.to(device)
                model_inputs_device = {}
                for k, v in model_inputs.items():
                    if isinstance(v, Tuple):
                        model_inputs_device[k] = tuple(
                            x.to(device) if isinstance(x, torch.Tensor) else None for x in v
                        )
                    elif isinstance(v, List):
                        model_inputs_device[k] = [
                            tuple(x.to(device) if isinstance(x, torch.Tensor) else None for x in t) for t in v
                        ]
                    else:
                        model_inputs_device[k] = v.to(device)

                model_inputs = model_inputs_device

            inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys())
            onnx_outputs = list(config.outputs.keys())

            if not inputs_match:
                raise ValueError("Model and config inputs doesn't match")

            config.patch_ops()

            # PyTorch deprecated the `enable_onnx_checker` and `use_external_data_format` arguments in v1.11,
            # so we check the torch version for backwards compatibility
            if is_torch_less_than_1_11:
                # export can work with named args but the dict containing named args
                # has to be the last element of the args tuple.
                try:
                    onnx_export(
                        model,
                        (model_inputs,),
                        f=output.as_posix(),
                        input_names=list(config.inputs.keys()),
                        output_names=onnx_outputs,
                        dynamic_axes=dict(chain(config.inputs.items(), config.outputs.items())),
                        do_constant_folding=True,
                        use_external_data_format=config.use_external_data_format(model.num_parameters()),
                        enable_onnx_checker=True,
                        opset_version=opset,
                    )
                except RuntimeError as err:
                    message = str(err)
                    if (
                        message
                        == "Exporting model exceed maximum protobuf size of 2GB. Please call torch.onnx.export without"
                        " setting use_external_data_format parameter."
                    ):
                        message = (
                            "Exporting model exceed maximum protobuf size of 2GB. Please call torch.onnx.export"
                            " without setting use_external_data_format parameter or try with torch 1.10+."
                        )
                        raise RuntimeError(message)
                    else:
                        raise err
            else:
                onnx_export(
                    model,
                    (model_inputs,),
                    f=output.as_posix(),
                    input_names=list(config.inputs.keys()),
                    output_names=onnx_outputs,
                    dynamic_axes=dict(chain(config.inputs.items(), config.outputs.items())),
                    do_constant_folding=True,
                    opset_version=opset,
                )

            config.restore_ops()

    return matched_inputs, onnx_outputs


def export_tensorflow(
    preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin"],
    model: "TFPreTrainedModel",
    config: OnnxConfig,
    opset: int,
    output: Path,
    tokenizer: "PreTrainedTokenizer" = None,
) -> Tuple[List[str], List[str]]:
    """
    Export a TensorFlow model to an ONNX Intermediate Representation (IR)

    Args:
        preprocessor: ([`PreTrainedTokenizer`] or [`FeatureExtractionMixin`]):
            The preprocessor used for encoding the data.
        model ([`TFPreTrainedModel`]):
            The model to export.
        config ([`~onnx.config.OnnxConfig`]):
            The ONNX configuration associated with the exported model.
        opset (`int`):
            The version of the ONNX operator set to use.
        output (`Path`):
            Directory to store the exported ONNX model.

    Returns:
        `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
        the ONNX configuration.
    """
    import onnx
    import tensorflow as tf
    import tf2onnx

    if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
        raise ValueError("You cannot provide both a tokenizer and preprocessor to export the model.")
    if tokenizer is not None:
        warnings.warn(
            "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
            " `preprocessor` instead.",
            FutureWarning,
        )
        logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
        preprocessor = tokenizer

    model.config.return_dict = True

    # Check if we need to override certain configuration item
    if config.values_override is not None:
        logger.info(f"Overriding {len(config.values_override)} configuration item(s)")
        for override_config_key, override_config_value in config.values_override.items():
            logger.info(f"\t- {override_config_key} -> {override_config_value}")
            setattr(model.config, override_config_key, override_config_value)

    # Ensure inputs match
    model_inputs = config.generate_dummy_inputs(preprocessor, framework=TensorType.TENSORFLOW)
    inputs_match, matched_inputs = ensure_model_and_config_inputs_match(model, model_inputs.keys())
    onnx_outputs = list(config.outputs.keys())

    input_signature = [
        tf.TensorSpec([None] * tensor.ndim, dtype=tensor.dtype, name=key) for key, tensor in model_inputs.items()
    ]
    onnx_model, _ = tf2onnx.convert.from_keras(model, input_signature, opset=opset)
    onnx.save(onnx_model, output.as_posix())
    config.restore_ops()

    return matched_inputs, onnx_outputs


def export(
    preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"],
    model: Union["PreTrainedModel", "TFPreTrainedModel"],
    config: OnnxConfig,
    opset: int,
    output: Path,
    tokenizer: "PreTrainedTokenizer" = None,
    device: str = "cpu",
) -> Tuple[List[str], List[str]]:
    """
    Export a Pytorch or TensorFlow model to an ONNX Intermediate Representation (IR)

    Args:
        preprocessor: ([`PreTrainedTokenizer`], [`FeatureExtractionMixin`] or [`ProcessorMixin`]):
            The preprocessor used for encoding the data.
        model ([`PreTrainedModel`] or [`TFPreTrainedModel`]):
            The model to export.
        config ([`~onnx.config.OnnxConfig`]):
            The ONNX configuration associated with the exported model.
        opset (`int`):
            The version of the ONNX operator set to use.
        output (`Path`):
            Directory to store the exported ONNX model.
        device (`str`, *optional*, defaults to `cpu`):
            The device on which the ONNX model will be exported. Either `cpu` or `cuda`. Only PyTorch is supported for
            export on CUDA devices.

    Returns:
        `Tuple[List[str], List[str]]`: A tuple with an ordered list of the model's inputs, and the named inputs from
        the ONNX configuration.
    """
    if not (is_torch_available() or is_tf_available()):
        raise ImportError(
            "Cannot convert because neither PyTorch nor TensorFlow are not installed. "
            "Please install torch or tensorflow first."
        )

    if is_tf_available() and isinstance(model, TFPreTrainedModel) and device == "cuda":
        raise RuntimeError("`tf2onnx` does not support export on CUDA device.")

    if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
        raise ValueError("You cannot provide both a tokenizer and a preprocessor to export the model.")
    if tokenizer is not None:
        warnings.warn(
            "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
            " `preprocessor` instead.",
            FutureWarning,
        )
        logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
        preprocessor = tokenizer

    if is_torch_available():
        from ..utils import get_torch_version

        if not config.is_torch_support_available:
            logger.warning(
                f"Unsupported PyTorch version for this model. Minimum required is {config.torch_onnx_minimum_version},"
                f" got: {get_torch_version()}"
            )

    if is_torch_available() and issubclass(type(model), PreTrainedModel):
        return export_pytorch(preprocessor, model, config, opset, output, tokenizer=tokenizer, device=device)
    elif is_tf_available() and issubclass(type(model), TFPreTrainedModel):
        return export_tensorflow(preprocessor, model, config, opset, output, tokenizer=tokenizer)


def validate_model_outputs(
    config: OnnxConfig,
    preprocessor: Union["PreTrainedTokenizer", "FeatureExtractionMixin", "ProcessorMixin"],
    reference_model: Union["PreTrainedModel", "TFPreTrainedModel"],
    onnx_model: Path,
    onnx_named_outputs: List[str],
    atol: float,
    tokenizer: "PreTrainedTokenizer" = None,
):
    from onnxruntime import InferenceSession, SessionOptions

    logger.info("Validating ONNX model...")

    if isinstance(preprocessor, PreTrainedTokenizerBase) and tokenizer is not None:
        raise ValueError("You cannot provide both a tokenizer and a preprocessor to validate the model outputs.")
    if tokenizer is not None:
        warnings.warn(
            "The `tokenizer` argument is deprecated and will be removed in version 5 of Transformers. Use"
            " `preprocessor` instead.",
            FutureWarning,
        )
        logger.info("Overwriting the `preprocessor` argument with `tokenizer` to generate dummmy inputs.")
        preprocessor = tokenizer

    # generate inputs with a different batch_size and seq_len that was used for conversion to properly test
    # dynamic input shapes.
    if is_torch_available() and issubclass(type(reference_model), PreTrainedModel):
        reference_model_inputs = config.generate_dummy_inputs(
            preprocessor,
            batch_size=config.default_fixed_batch + 1,
            seq_length=config.default_fixed_sequence + 1,
            framework=TensorType.PYTORCH,
        )
    else:
        reference_model_inputs = config.generate_dummy_inputs(
            preprocessor,
            batch_size=config.default_fixed_batch + 1,
            seq_length=config.default_fixed_sequence + 1,
            framework=TensorType.TENSORFLOW,
        )

    # Create ONNX Runtime session
    options = SessionOptions()
    session = InferenceSession(onnx_model.as_posix(), options, providers=["CPUExecutionProvider"])

    # Compute outputs from the reference model
    if is_torch_available() and issubclass(type(reference_model), PreTrainedModel):
        reference_model.to("cpu")
    ref_outputs = reference_model(**reference_model_inputs)
    ref_outputs_dict = {}

    # We flatten potential collection of outputs (i.e. past_keys) to a flat structure
    for name, value in ref_outputs.items():
        # Overwriting the output name as "present" since it is the name used for the ONNX outputs
        # ("past_key_values" being taken for the ONNX inputs)
        if name == "past_key_values":
            name = "present"
        if isinstance(value, (list, tuple)):
            value = config.flatten_output_collection_property(name, value)
            ref_outputs_dict.update(value)
        else:
            ref_outputs_dict[name] = value

    # Create onnxruntime inputs from the reference model inputs
    reference_model_inputs_onnxruntime = config.generate_dummy_inputs_onnxruntime(reference_model_inputs)

    # We flatten potential collection of inputs (i.e. past_keys)
    onnx_inputs = {}
    for name, value in reference_model_inputs_onnxruntime.items():
        if isinstance(value, (list, tuple)):
            value = config.flatten_output_collection_property(name, value)
            onnx_inputs.update({tensor_name: pt_tensor.numpy() for tensor_name, pt_tensor in value.items()})
        else:
            onnx_inputs[name] = value.numpy()

    # Compute outputs from the ONNX model
    onnx_outputs = session.run(onnx_named_outputs, onnx_inputs)

    # Check we have a subset of the keys into onnx_outputs against ref_outputs
    ref_outputs_set, onnx_outputs_set = set(ref_outputs_dict.keys()), set(onnx_named_outputs)
    if not onnx_outputs_set.issubset(ref_outputs_set):
        logger.info(
            f"\t-[x] ONNX model output names {onnx_outputs_set} do not match reference model {ref_outputs_set}"
        )

        raise ValueError(
            "Outputs doesn't match between reference model and ONNX exported model: "
            f"{onnx_outputs_set.difference(ref_outputs_set)}"
        )
    else:
        logger.info(f"\t-[βœ“] ONNX model output names match reference model ({onnx_outputs_set})")

    # Check the shape and values match
    for name, ort_value in zip(onnx_named_outputs, onnx_outputs):
        if is_torch_available() and issubclass(type(reference_model), PreTrainedModel):
            ref_value = ref_outputs_dict[name].detach().numpy()
        else:
            ref_value = ref_outputs_dict[name].numpy()
        logger.info(f'\t- Validating ONNX Model output "{name}":')

        # Shape
        if not ort_value.shape == ref_value.shape:
            logger.info(f"\t\t-[x] shape {ort_value.shape} doesn't match {ref_value.shape}")
            raise ValueError(
                "Outputs shape doesn't match between reference model and ONNX exported model: "
                f"Got {ref_value.shape} (reference) and {ort_value.shape} (ONNX)"
            )
        else:
            logger.info(f"\t\t-[βœ“] {ort_value.shape} matches {ref_value.shape}")

        # Values
        if not np.allclose(ref_value, ort_value, atol=atol):
            bad_indices = np.logical_not(np.isclose(ref_value, ort_value, atol=atol))
            logger.info(f"\t\t-[x] values not close enough (atol: {atol})")
            raise ValueError(
                "Outputs values doesn't match between reference model and ONNX exported model: "
                f"Got max absolute difference of: {np.amax(np.abs(ref_value - ort_value))} for "
                f"{ref_value[bad_indices]} vs {ort_value[bad_indices]}"
            )
        else:
            logger.info(f"\t\t-[βœ“] all values close (atol: {atol})")


def ensure_model_and_config_inputs_match(
    model: Union["PreTrainedModel", "TFPreTrainedModel"], model_inputs: Iterable[str]
) -> Tuple[bool, List[str]]:
    """

    :param model_inputs: :param config_inputs: :return:
    """
    if is_torch_available() and issubclass(type(model), PreTrainedModel):
        forward_parameters = signature(model.forward).parameters
    else:
        forward_parameters = signature(model.call).parameters
    model_inputs_set = set(model_inputs)

    # We are fine if config_inputs has more keys than model_inputs
    forward_inputs_set = set(forward_parameters.keys())
    is_ok = model_inputs_set.issubset(forward_inputs_set)

    # Make sure the input order match (VERY IMPORTANT !!!!)
    matching_inputs = forward_inputs_set.intersection(model_inputs_set)
    ordered_inputs = [parameter for parameter in forward_parameters.keys() if parameter in matching_inputs]
    return is_ok, ordered_inputs