File size: 7,997 Bytes
4ba09fa 9403943 4ba09fa 9403943 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 |
from typing import Tuple, List
import cv2
import numpy as np
import supervision as sv
import torch
from PIL import Image
from torchvision.ops import box_convert
import groundingdino.datasets.transforms as T
from groundingdino.models import build_model
from groundingdino.util.misc import clean_state_dict
from groundingdino.util.slconfig import SLConfig
from groundingdino.util.utils import get_phrases_from_posmap
# ----------------------------------------------------------------------------------------------------------------------
# OLD API
# ----------------------------------------------------------------------------------------------------------------------
def preprocess_caption(caption: str) -> str:
result = caption.lower().strip()
if result.endswith("."):
return result
return result + "."
def load_model(model_config_path: str, model_checkpoint_path: str, device: str = "cuda"):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location="cpu")
model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
model.eval()
return model
def load_image(image_path: str) -> Tuple[np.array, torch.Tensor]:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_source = Image.open(image_path).convert("RGB")
image = np.asarray(image_source)
image_transformed, _ = transform(image_source, None)
return image, image_transformed
def predict(
model,
image: torch.Tensor,
caption: str,
box_threshold: float,
text_threshold: float,
device: str = "cuda"
) -> Tuple[torch.Tensor, torch.Tensor, List[str]]:
caption = preprocess_caption(caption=caption)
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
prediction_logits = outputs["pred_logits"].cpu().sigmoid()[0] # prediction_logits.shape = (nq, 256)
prediction_boxes = outputs["pred_boxes"].cpu()[0] # prediction_boxes.shape = (nq, 4)
mask = prediction_logits.max(dim=1)[0] > box_threshold
logits = prediction_logits[mask] # logits.shape = (n, 256)
boxes = prediction_boxes[mask] # boxes.shape = (n, 4)
tokenizer = model.tokenizer
tokenized = tokenizer(caption)
phrases = [
get_phrases_from_posmap(logit > text_threshold, tokenized, tokenizer).replace('.', '')
for logit
in logits
]
return boxes, logits.max(dim=1)[0], phrases
def annotate(image_source: np.ndarray, boxes: torch.Tensor, logits: torch.Tensor, phrases: List[str]) -> np.ndarray:
h, w, _ = image_source.shape
boxes = boxes * torch.Tensor([w, h, w, h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
detections = sv.Detections(xyxy=xyxy)
labels = [
f"{phrase} {logit:.2f}"
for phrase, logit
in zip(phrases, logits)
]
box_annotator = sv.BoxAnnotator()
annotated_frame = cv2.cvtColor(image_source, cv2.COLOR_RGB2BGR)
annotated_frame = box_annotator.annotate(scene=annotated_frame, detections=detections, labels=labels)
return annotated_frame
# ----------------------------------------------------------------------------------------------------------------------
# NEW API
# ----------------------------------------------------------------------------------------------------------------------
class Model:
def __init__(
self,
model_config_path: str,
model_checkpoint_path: str,
device: str = "cuda"
):
self.model = load_model(
model_config_path=model_config_path,
model_checkpoint_path=model_checkpoint_path,
device=device
).to(device)
self.device = device
def predict_with_caption(
self,
image: np.ndarray,
caption: str,
box_threshold: float = 0.35,
text_threshold: float = 0.25
) -> Tuple[sv.Detections, List[str]]:
"""
import cv2
image = cv2.imread(IMAGE_PATH)
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
detections, labels = model.predict_with_caption(
image=image,
caption=caption,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
import supervision as sv
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image, detections=detections, labels=labels)
"""
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold)
source_h, source_w, _ = image.shape
detections = Model.post_process_result(
source_h=source_h,
source_w=source_w,
boxes=boxes,
logits=logits)
return detections, phrases
def predict_with_classes(
self,
image: np.ndarray,
classes: List[str],
box_threshold: float,
text_threshold: float
) -> sv.Detections:
"""
import cv2
image = cv2.imread(IMAGE_PATH)
model = Model(model_config_path=CONFIG_PATH, model_checkpoint_path=WEIGHTS_PATH)
detections = model.predict_with_classes(
image=image,
classes=CLASSES,
box_threshold=BOX_THRESHOLD,
text_threshold=TEXT_THRESHOLD
)
import supervision as sv
box_annotator = sv.BoxAnnotator()
annotated_image = box_annotator.annotate(scene=image, detections=detections)
"""
caption = ", ".join(classes)
processed_image = Model.preprocess_image(image_bgr=image).to(self.device)
boxes, logits, phrases = predict(
model=self.model,
image=processed_image,
caption=caption,
box_threshold=box_threshold,
text_threshold=text_threshold)
source_h, source_w, _ = image.shape
detections = Model.post_process_result(
source_h=source_h,
source_w=source_w,
boxes=boxes,
logits=logits)
class_id = Model.phrases2classes(phrases=phrases, classes=classes)
detections.class_id = class_id
return detections
@staticmethod
def preprocess_image(image_bgr: np.ndarray) -> torch.Tensor:
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image_pillow = Image.fromarray(cv2.cvtColor(image_bgr, cv2.COLOR_BGR2RGB))
image_transformed, _ = transform(image_pillow, None)
return image_transformed
@staticmethod
def post_process_result(
source_h: int,
source_w: int,
boxes: torch.Tensor,
logits: torch.Tensor
) -> sv.Detections:
boxes = boxes * torch.Tensor([source_w, source_h, source_w, source_h])
xyxy = box_convert(boxes=boxes, in_fmt="cxcywh", out_fmt="xyxy").numpy()
confidence = logits.numpy()
return sv.Detections(xyxy=xyxy, confidence=confidence)
@staticmethod
def phrases2classes(phrases: List[str], classes: List[str]) -> np.ndarray:
class_ids = []
for phrase in phrases:
try:
class_ids.append(classes.index(phrase))
except ValueError:
class_ids.append(None)
return np.array(class_ids)
|