Spaces:
Starting
on
T4
Starting
on
T4
File size: 12,476 Bytes
760bde3 fd01170 760bde3 434a891 6061d17 40c7708 6061d17 760bde3 5c0bd4c fd01170 6061d17 fd01170 4ba09fa 6061d17 4ba09fa 434a891 4ba09fa c419c35 4ba09fa ca589ef 4ba09fa 57ec633 c419c35 57ec633 c419c35 4ba09fa 57ec633 4ba09fa 2e4e1c8 4ba09fa c419c35 4ba09fa c419c35 4ba09fa c419c35 4ba09fa 2e4e1c8 4ba09fa 2e4e1c8 4ba09fa c419c35 4ba09fa ca589ef 4ba09fa ca589ef 2e4e1c8 81fed1b 4ba09fa 81fed1b 4ba09fa e5f7fa3 4ba09fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 |
import subprocess, os, sys
os.environ["CUDA_VISIBLE_DEVICES"] = "0"
sys.path.insert(0, './GroundingDINO')
result = subprocess.run(['pip', 'list'], check=True)
print(f'pip list result = {result}')
if not os.path.exists('./sam_vit_h_4b8939.pth'):
result = subprocess.run(['wget', 'https://dl.fbaipublicfiles.com/segment_anything/sam_vit_h_4b8939.pth'], check=True)
print(f'wget sam_vit_h_4b8939.pth result = {result}')
import gradio as gr
import argparse
import copy
import numpy as np
import torch
from PIL import Image, ImageDraw, ImageFont
# Grounding DINO
import GroundingDINO.groundingdino.datasets.transforms as T
from GroundingDINO.groundingdino.models import build_model
from GroundingDINO.groundingdino.util import box_ops
from GroundingDINO.groundingdino.util.slconfig import SLConfig
from GroundingDINO.groundingdino.util.utils import clean_state_dict, get_phrases_from_posmap
# segment anything
from segment_anything import build_sam, SamPredictor
import cv2
import numpy as np
import matplotlib.pyplot as plt
# diffusers
import PIL
import requests
import torch
from io import BytesIO
from diffusers import StableDiffusionInpaintPipeline
from huggingface_hub import hf_hub_download
def get_device():
from numba import cuda
if cuda.is_available():
device = 'cuda:0' # cuda.get_current_device()
else:
device = 'cpu'
return device
def load_model_hf(model_config_path, repo_id, filename, device='cpu'):
args = SLConfig.fromfile(model_config_path)
model = build_model(args)
args.device = device
cache_file = hf_hub_download(repo_id=repo_id, filename=filename)
checkpoint = torch.load(cache_file, map_location='cpu')
log = model.load_state_dict(clean_state_dict(checkpoint['model']), strict=False)
print("Model loaded from {} \n => {}".format(cache_file, log))
_ = model.eval()
return model
def plot_boxes_to_image(image_pil, tgt):
H, W = tgt["size"]
boxes = tgt["boxes"]
labels = tgt["labels"]
assert len(boxes) == len(labels), "boxes and labels must have same length"
draw = ImageDraw.Draw(image_pil)
mask = Image.new("L", image_pil.size, 0)
mask_draw = ImageDraw.Draw(mask)
# draw boxes and masks
for box, label in zip(boxes, labels):
# from 0..1 to 0..W, 0..H
box = box * torch.Tensor([W, H, W, H])
# from xywh to xyxy
box[:2] -= box[2:] / 2
box[2:] += box[:2]
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
# draw
x0, y0, x1, y1 = box
x0, y0, x1, y1 = int(x0), int(y0), int(x1), int(y1)
draw.rectangle([x0, y0, x1, y1], outline=color, width=6)
# draw.text((x0, y0), str(label), fill=color)
font = ImageFont.load_default()
if hasattr(font, "getbbox"):
bbox = draw.textbbox((x0, y0), str(label), font)
else:
w, h = draw.textsize(str(label), font)
bbox = (x0, y0, w + x0, y0 + h)
# bbox = draw.textbbox((x0, y0), str(label))
draw.rectangle(bbox, fill=color)
draw.text((x0, y0), str(label), fill="white")
mask_draw.rectangle([x0, y0, x1, y1], fill=255, width=6)
return image_pil, mask
def load_image(image_path):
# # load image
# image_pil = Image.open(image_path).convert("RGB") # load image
image_pil = image_path
transform = T.Compose(
[
T.RandomResize([800], max_size=1333),
T.ToTensor(),
T.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
image, _ = transform(image_pil, None) # 3, h, w
return image_pil, image
def load_model(model_config_path, model_checkpoint_path, device):
args = SLConfig.fromfile(model_config_path)
args.device = device
model = build_model(args)
checkpoint = torch.load(model_checkpoint_path, map_location=device) #"cpu")
load_res = model.load_state_dict(clean_state_dict(checkpoint["model"]), strict=False)
print(load_res)
_ = model.eval()
return model
def get_grounding_output(model, image, caption, box_threshold, text_threshold, with_logits=True, device="cpu"):
caption = caption.lower()
caption = caption.strip()
if not caption.endswith("."):
caption = caption + "."
model = model.to(device)
image = image.to(device)
with torch.no_grad():
outputs = model(image[None], captions=[caption])
logits = outputs["pred_logits"].cpu().sigmoid()[0] # (nq, 256)
boxes = outputs["pred_boxes"].cpu()[0] # (nq, 4)
logits.shape[0]
# filter output
logits_filt = logits.clone()
boxes_filt = boxes.clone()
filt_mask = logits_filt.max(dim=1)[0] > box_threshold
logits_filt = logits_filt[filt_mask] # num_filt, 256
boxes_filt = boxes_filt[filt_mask] # num_filt, 4
logits_filt.shape[0]
# get phrase
tokenlizer = model.tokenizer
tokenized = tokenlizer(caption)
# build pred
pred_phrases = []
for logit, box in zip(logits_filt, boxes_filt):
pred_phrase = get_phrases_from_posmap(logit > text_threshold, tokenized, tokenlizer)
if with_logits:
pred_phrases.append(pred_phrase + f"({str(logit.max().item())[:4]})")
else:
pred_phrases.append(pred_phrase)
return boxes_filt, pred_phrases
def show_mask(mask, ax, random_color=False):
if random_color:
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
else:
color = np.array([30/255, 144/255, 255/255, 0.6])
h, w = mask.shape[-2:]
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
ax.imshow(mask_image)
def show_box(box, ax, label):
x0, y0 = box[0], box[1]
w, h = box[2] - box[0], box[3] - box[1]
ax.add_patch(plt.Rectangle((x0, y0), w, h, edgecolor='green', facecolor=(0,0,0,0), lw=2))
ax.text(x0, y0, label)
config_file = 'GroundingDINO/groundingdino/config/GroundingDINO_SwinT_OGC.py'
ckpt_repo_id = "ShilongLiu/GroundingDINO"
ckpt_filenmae = "groundingdino_swint_ogc.pth"
sam_checkpoint = './sam_vit_h_4b8939.pth'
output_dir = "outputs"
device = "cuda"
device = get_device()
print(f'device={device}')
# initialize groundingdino model
groundingdino_model = load_model_hf(config_file, ckpt_repo_id, ckpt_filenmae)
# initialize SAM
sam_predictor = SamPredictor(build_sam(checkpoint=sam_checkpoint))
# initialize stable-diffusion-inpainting
sd_pipe = StableDiffusionInpaintPipeline.from_pretrained(
"runwayml/stable-diffusion-inpainting",
torch_dtype=torch.float16
)
sd_pipe = sd_pipe.to(device)
def run_grounded_sam(image_path, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold):
assert text_prompt, 'text_prompt is not found!'
# make dir
os.makedirs(output_dir, exist_ok=True)
# load image
image_pil, image = load_image(image_path.convert("RGB"))
# visualize raw image
image_pil.save(os.path.join(output_dir, "raw_image.jpg"))
# run grounding dino model
boxes_filt, pred_phrases = get_grounding_output(
groundingdino_model, image, text_prompt, box_threshold, text_threshold, device='cpu'
)
size = image_pil.size
if task_type == 'segment' or task_type == 'inpainting':
image = np.array(image_path)
sam_predictor.set_image(image)
H, W = size[1], size[0]
for i in range(boxes_filt.size(0)):
boxes_filt[i] = boxes_filt[i] * torch.Tensor([W, H, W, H])
boxes_filt[i][:2] -= boxes_filt[i][2:] / 2
boxes_filt[i][2:] += boxes_filt[i][:2]
boxes_filt = boxes_filt.cpu()
transformed_boxes = sam_predictor.transform.apply_boxes_torch(boxes_filt, image.shape[:2])
masks, _, _ = sam_predictor.predict_torch(
point_coords = None,
point_labels = None,
boxes = transformed_boxes,
multimask_output = False,
)
# masks: [1, 1, 512, 512]
if task_type == 'detection':
pred_dict = {
"boxes": boxes_filt,
"size": [size[1], size[0]], # H,W
"labels": pred_phrases,
}
# import ipdb; ipdb.set_trace()
image_with_box = plot_boxes_to_image(image_pil, pred_dict)[0]
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
image_with_box.save(image_path)
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
return image_result
elif task_type == 'segment':
assert sam_checkpoint, 'sam_checkpoint is not found!'
# draw output image
plt.figure(figsize=(10, 10))
plt.imshow(image)
for mask in masks:
show_mask(mask.cpu().numpy(), plt.gca(), random_color=True)
for box, label in zip(boxes_filt, pred_phrases):
show_box(box.numpy(), plt.gca(), label)
plt.axis('off')
image_path = os.path.join(output_dir, "grounding_dino_output.jpg")
plt.savefig(image_path, bbox_inches="tight")
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
return image_result
elif task_type == 'inpainting':
assert inpaint_prompt, 'inpaint_prompt is not found!'
# inpainting pipeline
mask = masks[0][0].cpu().numpy() # simply choose the first mask, which will be refine in the future release
mask_pil = Image.fromarray(mask)
image_pil = Image.fromarray(image)
image = sd_pipe(prompt=inpaint_prompt, image=image_pil, mask_image=mask_pil).images[0]
image_path = os.path.join(output_dir, "grounded_sam_inpainting_output.jpg")
image.save(image_path)
image_result = cv2.cvtColor(cv2.imread(image_path), cv2.COLOR_BGR2RGB)
return image_result
else:
print("task_type:{} error!".format(task_type))
def change_task_type(task_type):
if task_type == "inpainting":
return gr.Textbox.update(visible=True)
else:
return gr.Textbox.update(visible=False)
if __name__ == "__main__":
parser = argparse.ArgumentParser("Grounded SAM demo", add_help=True)
parser.add_argument("--debug", action="store_true", help="using debug mode")
parser.add_argument("--share", action="store_true", help="share the app")
args = parser.parse_args()
print(f'args = {args}')
block = gr.Blocks().queue()
with block:
with gr.Row():
with gr.Column():
input_image = gr.Image(source='upload', type="pil")
task_type = gr.Radio(["detection", "segment", "inpainting"], value="detection",
label='Task type',interactive=True, visible=True)
text_prompt = gr.Textbox(label="Detection Prompt", placeholder="Cannot be empty")
inpaint_prompt = gr.Textbox(label="Inpaint Prompt", visible=True)
run_button = gr.Button(label="Run")
with gr.Accordion("Advanced options", open=False):
box_threshold = gr.Slider(
label="Box Threshold", minimum=0.0, maximum=1.0, value=0.3, step=0.001
)
text_threshold = gr.Slider(
label="Text Threshold", minimum=0.0, maximum=1.0, value=0.25, step=0.001
)
with gr.Column():
gallery = gr.outputs.Image(
type="pil",
).style(full_width=True, full_height=True)
run_button.click(fn=run_grounded_sam, inputs=[
input_image, text_prompt, task_type, inpaint_prompt, box_threshold, text_threshold], outputs=[gallery])
# task_type.change(fn=change_task_type, inputs=[task_type], outputs=[inpaint_prompt])
DESCRIPTION = '### This demo from [Grounded-Segment-Anything](https://github.com/IDEA-Research/Grounded-Segment-Anything). Thanks for their excellent work.'
DESCRIPTION += f'<p>For faster inference without waiting in queue, you may duplicate the space and upgrade to GPU in settings. <a href="https://huggingface.co/spaces/yizhangliu/Grounded-Segment-Anything?duplicate=true"><img style="display: inline; margin-top: 0em; margin-bottom: 0em" src="https://bit.ly/3gLdBN6" alt="Duplicate Space" /></a></p>'
gr.Markdown(DESCRIPTION)
block.launch(server_name='0.0.0.0', debug=args.debug, share=args.share) |