File size: 11,175 Bytes
28c2a3d |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 |
from base_class import ChatbotEngine
import os
import openai
import json
import os
import requests
import tiktoken
from config import MAX_TOKEN_MODEL_MAP
from utils import get_filtered_keys_from_object
class ChatbotWrapper:
"""
Wrapper of Official ChatGPT API,
# base on https://github.com/ChatGPT-Hackers/revChatGPT
"""
def __init__(
self,
api_key: str,
engine: str = os.environ.get("GPT_ENGINE") or "gpt-3.5-turbo",
proxy: str = None,
max_tokens: int = 3000,
temperature: float = 0.5,
top_p: float = 1.0,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
reply_count: int = 1,
system_prompt: str = "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
overhead_token=96,
) -> None:
"""
Initialize Chatbot with API key (from https://platform.openai.com/account/api-keys)
"""
self.engine = engine
self.session = requests.Session()
self.api_key = api_key
self.system_prompt = system_prompt
self.max_tokens = max_tokens
self.temperature = temperature
self.top_p = top_p
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.reply_count = reply_count
self.max_limit = MAX_TOKEN_MODEL_MAP[self.engine]
self.overhead_token = overhead_token
if proxy:
self.session.proxies = {
"http": proxy,
"https": proxy,
}
self.conversation: dict = {
"default": [
{
"role": "system",
"content": system_prompt,
},
],
}
if max_tokens > self.max_limit - self.overhead_token:
raise Exception(
f"Max tokens cannot be greater than {self.max_limit- self.overhead_token}")
if self.get_token_count("default") > self.max_tokens:
raise Exception("System prompt is too long")
def add_to_conversation(
self,
message: str,
role: str,
convo_id: str = "default",
) -> None:
"""
Add a message to the conversation
"""
self.conversation[convo_id].append({"role": role, "content": message})
def __truncate_conversation(self, convo_id: str = "default") -> None:
"""
Truncate the conversation
"""
# TODO: context condense with soft prompt tuning
while True:
if (
self.get_token_count(convo_id) > self.max_tokens
and len(self.conversation[convo_id]) > 1
):
# Don't remove the first message and remove the first QA pair
self.conversation[convo_id].pop(1)
self.conversation[convo_id].pop(1)
# TODO: optimal pop out based on similarity distance
else:
break
# https://github.com/openai/openai-cookbook/blob/main/examples/How_to_count_tokens_with_tiktoken.ipynb
def get_token_count(self, convo_id: str = "default") -> int:
"""
Get token count
"""
if self.engine not in ["gpt-3.5-turbo", "gpt-3.5-turbo-0301"]:
raise NotImplementedError("Unsupported engine {self.engine}")
encoding = tiktoken.encoding_for_model(self.engine)
num_tokens = 0
for message in self.conversation[convo_id]:
# every message follows <im_start>{role/name}\n{content}<im_end>\n
num_tokens += 4
for key, value in message.items():
num_tokens += len(encoding.encode(value))
if key == "name": # if there's a name, the role is omitted
num_tokens += 1 # role is always required and always 1 token
num_tokens += 2 # every reply is primed with <im_start>assistant
return num_tokens
def get_max_tokens(self, convo_id: str) -> int:
"""
Get max tokens
"""
return self.max_tokens - self.get_token_count(convo_id)
def ask_stream(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
dynamic_system_prompt=None,
**kwargs,
) -> str:
"""
Ask a question
"""
# Make conversation if it doesn't exist
if convo_id not in self.conversation:
self.reset(convo_id=convo_id, system_prompt=dynamic_system_prompt)
# adjust system prompt
assert dynamic_system_prompt is not None
self.conversation[convo_id][0]["content"] = dynamic_system_prompt
self.add_to_conversation(prompt, "user", convo_id=convo_id)
print(" total tokens:")
print(self.get_token_count(convo_id))
self.__truncate_conversation(convo_id=convo_id)
# Get response
response = self.session.post(
os.environ.get(
"API_URL") or "https://api.openai.com/v1/chat/completions",
headers={
"Authorization": f"Bearer {kwargs.get('api_key', self.api_key)}"},
json={
"model": self.engine,
"messages": self.conversation[convo_id],
"stream": True,
# kwargs
"temperature": kwargs.get("temperature", self.temperature),
"top_p": kwargs.get("top_p", self.top_p),
"presence_penalty": kwargs.get(
"presence_penalty",
self.presence_penalty,
),
"frequency_penalty": kwargs.get(
"frequency_penalty",
self.frequency_penalty,
),
"n": kwargs.get("n", self.reply_count),
"user": role,
"max_tokens": self. get_max_tokens(convo_id=convo_id),
},
stream=True,
)
if response.status_code != 200:
raise Exception(
f"Error: {response.status_code} {response.reason} {response.text}",
)
response_role: str = None
full_response: str = ""
for line in response.iter_lines():
if not line:
continue
# Remove "data: "
line = line.decode("utf-8")[6:]
if line == "[DONE]":
break
resp: dict = json.loads(line)
choices = resp.get("choices")
if not choices:
continue
delta = choices[0].get("delta")
if not delta:
continue
if "role" in delta:
response_role = delta["role"]
if "content" in delta:
content = delta["content"]
full_response += content
yield content
self.add_to_conversation(
full_response, response_role, convo_id=convo_id)
def ask(
self,
prompt: str,
role: str = "user",
convo_id: str = "default",
dynamic_system_prompt: str = None,
**kwargs,
) -> str:
"""
Non-streaming ask
"""
response = self.ask_stream(
prompt=prompt,
role=role,
convo_id=convo_id,
dynamic_system_prompt=dynamic_system_prompt,
**kwargs,
)
full_response: str = "".join(response)
return full_response
def rollback(self, n: int = 1, convo_id: str = "default") -> None:
"""
Rollback the conversation
"""
for _ in range(n):
self.conversation[convo_id].pop()
def reset(self, convo_id: str = "default", system_prompt: str = None) -> None:
"""
Reset the conversation
"""
self.conversation[convo_id] = [
{"role": "system", "content": system_prompt or self.system_prompt},
]
def save(self, file: str, *keys: str) -> None:
"""
Save the Chatbot configuration to a JSON file
"""
with open(file, "w", encoding="utf-8") as f:
json.dump(
{
key: self.__dict__[key]
for key in get_filtered_keys_from_object(self, *keys)
},
f,
indent=2,
# saves session.proxies dict as session
default=lambda o: o.__dict__["proxies"],
)
def load(self, file: str, *keys: str) -> None:
"""
Load the Chatbot configuration from a JSON file
"""
with open(file, encoding="utf-8") as f:
# load json, if session is in keys, load proxies
loaded_config = json.load(f)
keys = get_filtered_keys_from_object(self, *keys)
if "session" in keys and loaded_config["session"]:
self.session.proxies = loaded_config["session"]
keys = keys - {"session"}
self.__dict__.update({key: loaded_config[key] for key in keys})
class OpenAIChatbot(ChatbotEngine):
def __init__(self, api_key: str,
engine: str = os.environ.get("GPT_ENGINE") or "gpt-3.5-turbo",
proxy: str = None,
max_tokens: int = 3000,
temperature: float = 0.5,
top_p: float = 1.0,
presence_penalty: float = 0.0,
frequency_penalty: float = 0.0,
reply_count: int = 1,
system_prompt: str = "You are ChatGPT, a large language model trained by OpenAI. Respond conversationally",
overhead_token=96) -> None:
openai.api_key = api_key
self.api_key = api_key
self.engine = engine
self.proxy = proxy
self.max_tokens = max_tokens
self.temperature = temperature
self.top_p = top_p
self.presence_penalty = presence_penalty
self.frequency_penalty = frequency_penalty
self.reply_count = reply_count
self.system_prompt = system_prompt
self.bot = ChatbotWrapper(
api_key=self.api_key,
engine=self.engine,
proxy=self.proxy,
max_tokens=self.max_tokens,
temperature=self.temperature,
top_p=self.top_p,
presence_penalty=self.presence_penalty,
frequency_penalty=self.frequency_penalty,
reply_count=self.reply_count,
system_prompt=self.system_prompt,
overhead_token=overhead_token
)
self.overhead_token = overhead_token
import tiktoken
self.encoding = tiktoken.encoding_for_model(self.engine)
def encode_length(self, text: str) -> int:
return len(self.encoding.encode(text))
def query(self, questions: str,
role: str = "user",
convo_id: str = "default",
context: str = None,
**kwargs,):
return self.bot.ask(prompt=questions, role=role, convo_id=convo_id, dynamic_system_prompt=context, **kwargs)
|