File size: 12,851 Bytes
6fd97c7
 
 
 
 
 
 
 
7662943
6fd97c7
8972c51
a92a559
60a928f
6fd97c7
8972c51
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fd97c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8972c51
6fd97c7
a4e3518
6fd97c7
 
8972c51
6fd97c7
 
 
 
 
8972c51
79a0312
82fbe58
79a0312
6fd97c7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8972c51
16e3fea
 
 
 
 
dca21c9
 
 
 
 
 
 
 
16e3fea
 
 
 
 
 
 
 
f718321
16e3fea
 
 
 
 
 
8972c51
16e3fea
dca21c9
f718321
16e3fea
 
 
 
 
 
f718321
16e3fea
 
79a0312
8972c51
42fa820
8972c51
 
 
 
 
 
e839e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1078f76
 
e839e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dca21c9
e839e85
 
 
 
 
 
8972c51
e839e85
 
 
 
 
 
 
 
 
 
 
 
8972c51
e839e85
 
 
1078f76
 
e839e85
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42fa820
 
 
4236b23
42fa820
 
 
8972c51
 
 
 
 
 
b5afed6
8972c51
a404b44
8972c51
19807db
8972c51
 
42fa820
3014a11
8972c51
 
 
42fa820
3014a11
6fd97c7
16e3fea
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
import os
import random
import sys
from typing import Sequence, Mapping, Any, Union
import torch
import gradio as gr
from huggingface_hub import hf_hub_download
import spaces
from comfy import model_management

from huggingface_hub import hf_hub_download


hf_hub_download(
    repo_id="Madespace/clip", 
    filename="google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors", 
    local_dir="models/clip"              
)
hf_hub_download(
    repo_id="ezioruan/inswapper_128.onnx",        
    filename="inswapper_128.onnx",       
    local_dir="models/insightface"              
)
hf_hub_download(
    repo_id="gmk123/GFPGAN",           
    filename="GFPGANv1.4.pth",           
    local_dir="models/facerestore_models" 
)
hf_hub_download(
    repo_id="gemasai/4x_NMKD-Superscale-SP_178000_G",          
    filename="4x_NMKD-Superscale-SP_178000_G.pth",  
    local_dir="models/upscale_models" 
)


def get_value_at_index(obj: Union[Sequence, Mapping], index: int) -> Any:
    """Returns the value at the given index of a sequence or mapping.
    If the object is a sequence (like list or string), returns the value at the given index.
    If the object is a mapping (like a dictionary), returns the value at the index-th key.
    Some return a dictionary, in these cases, we look for the "results" key
    Args:
        obj (Union[Sequence, Mapping]): The object to retrieve the value from.
        index (int): The index of the value to retrieve.
    Returns:
        Any: The value at the given index.
    Raises:
        IndexError: If the index is out of bounds for the object and the object is not a mapping.
    """
    try:
        return obj[index]
    except KeyError:
        return obj["result"][index]


def find_path(name: str, path: str = None) -> str:
    """
    Recursively looks at parent folders starting from the given path until it finds the given name.
    Returns the path as a Path object if found, or None otherwise.
    """
    # If no path is given, use the current working directory
    if path is None:
        path = os.getcwd()

    # Check if the current directory contains the name
    if name in os.listdir(path):
        path_name = os.path.join(path, name)
        print(f"{name} found: {path_name}")
        return path_name

    # Get the parent directory
    parent_directory = os.path.dirname(path)

    # If the parent directory is the same as the current directory, we've reached the root and stop the search
    if parent_directory == path:
        return None

    # Recursively call the function with the parent directory
    return find_path(name, parent_directory)


def add_comfyui_directory_to_sys_path() -> None:
    """
    Add 'ComfyUI' to the sys.path
    """
    comfyui_path = find_path("ComfyUI")
    if comfyui_path is not None and os.path.isdir(comfyui_path):
        sys.path.append(comfyui_path)
        print(f"'{comfyui_path}' added to sys.path")


def add_extra_model_paths() -> None:
    """
    Parse the optional extra_model_paths.yaml file and add the parsed paths to the sys.path.
    """
    try:
        from main import load_extra_path_config
    except ImportError:
        print(
            "Could not import load_extra_path_config from main.py. Looking in utils.extra_config instead."
        )
        from ut.extra_config import load_extra_path_config

    extra_model_paths = find_path("extra_model_paths.yaml")

    if extra_model_paths is not None:
        load_extra_path_config(extra_model_paths)
    else:
        print("Could not find the extra_model_paths config file.")


add_comfyui_directory_to_sys_path()
add_extra_model_paths()


def import_custom_nodes() -> None:
    """Find all custom nodes in the custom_nodes folder and add those node objects to NODE_CLASS_MAPPINGS
    This function sets up a new asyncio event loop, initializes the PromptServer,
    creates a PromptQueue, and initializes the custom nodes.
    """
    import asyncio
    import execution
    from nodes import init_extra_nodes
    import server

    # Creating a new event loop and setting it as the default loop
    loop = asyncio.new_event_loop()
    asyncio.set_event_loop(loop)

    # Creating an instance of PromptServer with the loop
    server_instance = server.PromptServer(loop)
    execution.PromptQueue(server_instance)

    # Initializing custom nodes
    init_extra_nodes()

from nodes import NODE_CLASS_MAPPINGS

#TO be added to "model_loaders" as it loads a model
# downloadandloadcogvideomodel = NODE_CLASS_MAPPINGS[
#     "DownloadAndLoadCogVideoModel"
# ]()
# downloadandloadcogvideomodel_1 = downloadandloadcogvideomodel.loadmodel(
#     model="THUDM/CogVideoX-5b",
#     precision="bf16",
#     quantization="disabled",
#     enable_sequential_cpu_offload=True,
#     attention_mode="sdpa",
#     load_device="main_device",
# )
# loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
# cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
# cliploader_20 = cliploader.load_clip(
#     clip_name="t5/google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
#     type="sd3",
#     device="default",
# )
# emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()

# cogvideotextencode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]()
# cogvideosampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]()
# cogvideodecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]()
# reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
# cr_upscale_image = NODE_CLASS_MAPPINGS["CR Upscale Image"]()
# vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()

# #Add all the models that load a safetensors file
# model_loaders = [downloadandloadcogvideomodel_1, cliploader_20]

# # Check which models are valid and how to best load them
# valid_models = [
#     getattr(loader[0], 'patcher', loader[0]) 
#     for loader in model_loaders
#     if not isinstance(loader[0], dict) and not isinstance(getattr(loader[0], 'patcher', None), dict)
# ]

# #Finally loads the models
# model_management.load_models_gpu(valid_models)

#Run ComfyUI Workflow
@spaces.GPU(duration=800)
def generate_video(positive_prompt, num_frames, input_image):
    
    print("Positive Prompt:", positive_prompt)
    print("Number of Frames:", num_frames)
    print("Input Image:", input_image)

    progress = gr.Progress(track_tqdm=True)
    import_custom_nodes()
    with torch.inference_mode():
        downloadandloadcogvideomodel = NODE_CLASS_MAPPINGS[
            "DownloadAndLoadCogVideoModel"
        ]()
        downloadandloadcogvideomodel_1 = downloadandloadcogvideomodel.loadmodel(
            model="THUDM/CogVideoX-5b",
            precision="bf16",
            quantization="disabled",
            enable_sequential_cpu_offload=True,
            attention_mode="sdpa",
            load_device="main_device",
        )

        loadimage = NODE_CLASS_MAPPINGS["LoadImage"]()
        loadimage_8 = loadimage.load_image(image=input_image)

        cliploader = NODE_CLASS_MAPPINGS["CLIPLoader"]()
        cliploader_20 = cliploader.load_clip(
            clip_name="google_t5-v1_1-xxl_encoderonly-fp8_e4m3fn.safetensors",
            type="sd3",
            device="default",
        )

        emptylatentimage = NODE_CLASS_MAPPINGS["EmptyLatentImage"]()
        emptylatentimage_161 = emptylatentimage.generate(
            width=480, #reduce this to avoid OOM error
            height=480, #reduce this to avoid OOM error
            batch_size=1 #reduce this to avoid OOM error
        )

        cogvideotextencode = NODE_CLASS_MAPPINGS["CogVideoTextEncode"]()
        cogvideosampler = NODE_CLASS_MAPPINGS["CogVideoSampler"]()
        cogvideodecode = NODE_CLASS_MAPPINGS["CogVideoDecode"]()
        reactorfaceswap = NODE_CLASS_MAPPINGS["ReActorFaceSwap"]()
        cr_upscale_image = NODE_CLASS_MAPPINGS["CR Upscale Image"]()
        vhs_videocombine = NODE_CLASS_MAPPINGS["VHS_VideoCombine"]()

        for q in range(1):
            cogvideotextencode_30 = cogvideotextencode.process(
                prompt=positive_prompt,
                strength=1,
                force_offload=True,
                clip=get_value_at_index(cliploader_20, 0),
            )

            cogvideotextencode_31 = cogvideotextencode.process(
                prompt='',
                strength=1,
                force_offload=True,
                clip=get_value_at_index(cogvideotextencode_30, 1),
            )

            cogvideosampler_155 = cogvideosampler.process(
                num_frames=num_frames,
                steps=30, #reduce this to avoid OOM error
                cfg=6,
                seed=random.randint(1, 2**64),
                scheduler="CogVideoXDDIM",
                denoise_strength=1,
                model=get_value_at_index(downloadandloadcogvideomodel_1, 0),
                positive=get_value_at_index(cogvideotextencode_30, 0),
                negative=get_value_at_index(cogvideotextencode_31, 0),
                samples=get_value_at_index(emptylatentimage_161, 0),
            )

            cogvideodecode_11 = cogvideodecode.decode(
                enable_vae_tiling=False,
                tile_sample_min_height=240,#reduce this to avoid OOM error
                tile_sample_min_width=240,#reduce this to avoid OOM error
                tile_overlap_factor_height=0.2,
                tile_overlap_factor_width=0.2,
                auto_tile_size=True,
                vae=get_value_at_index(downloadandloadcogvideomodel_1, 1),
                samples=get_value_at_index(cogvideosampler_155, 0),
            )

            reactorfaceswap_3 = reactorfaceswap.execute(
                enabled=True,
                swap_model="inswapper_128.onnx",
                facedetection="retinaface_resnet50",
                face_restore_model="GFPGANv1.4.pth",
                face_restore_visibility=1,
                codeformer_weight=0.75,
                detect_gender_input="no",
                detect_gender_source="no",
                input_faces_index="0",
                source_faces_index="0",
                console_log_level=1,
                input_image=get_value_at_index(cogvideodecode_11, 0),
                source_image=get_value_at_index(loadimage_8, 0),
            )

            cr_upscale_image_151 = cr_upscale_image.upscale(
                upscale_model="4x_NMKD-Superscale-SP_178000_G.pth",
                mode="rescale",
                rescale_factor=4,
                resize_width=720,
                resampling_method="lanczos",
                supersample="true",
                rounding_modulus=16,
                image=get_value_at_index(reactorfaceswap_3, 0),
            )

            vhs_videocombine_154 = vhs_videocombine.combine_video(
                frame_rate=8,
                loop_count=0,
                filename_prefix="AnimateDiff",
                format="video/h264-mp4",
                pix_fmt="yuv420p",
                crf=19,
                save_metadata=True,
                trim_to_audio=False,
                pingpong=True,
                save_output=True,
                images=get_value_at_index(cr_upscale_image_151, 0),
                unique_id=7214086815220268849,
            )
            video_path = f"output/{vhs_videocombine_154['ui']['gifs'][0]['filename']}"
            image_path = f"output/{vhs_videocombine_154['result'][0][1][0].split('/')[-1]}"
            
            print(vhs_videocombine_154)
            print(video_path, image_path)

            return video_path, image_path


if __name__ == "__main__":

    with gr.Blocks() as app:
        with gr.Row():
            positive_prompt = gr.Textbox(label="Positive Prompt", value="A young Asian man with shoulder-length black hair, wearing a stylish black outfit, playing an acoustic guitar on a dimly lit stage. His full face is visible, showing a calm and focused expression as he strums the guitar. A microphone stand is positioned near him, and a music stand with sheet music is in front of him. The stage lighting casts a soft, warm glow on his face, and the background features an intimate live music setting with visible metal beams and soft blue ambient lighting. The scene captures the artistic mood of a live performance, emphasizing the details of the guitar, the musician’s fingers on the strings, and the relaxed yet passionate vibe of the moment.", lines=2)
        with gr.Row():
            num_frames = gr.Number(label="Number of Frames", value=10)
        with gr.Row():
            input_image = gr.Image(label="Input Image", type="filepath")
        submit = gr.Button("Submit")
        output_video = gr.Video(label="Output Video")
        output_image = gr.Image(label="Output Image")
        
        submit.click(
            fn=generate_video, 
            inputs=[positive_prompt, num_frames, input_image],
            outputs=[output_video, output_image]
        )

    app.launch(share=True)