Spaces:
Running
on
Zero
Running
on
Zero
File size: 23,785 Bytes
92e0882 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 |
from typing import List, Dict, Union, Tuple
from PIL import Image, ImageDraw, ImageFilter, ImageOps, ImageEnhance
import spacy
import hashlib
import os
import torch
import torchvision
import torchvision.transforms as transforms
import clip
from transformers import BertTokenizer, RobertaTokenizerFast
import ruamel.yaml as yaml
import copy
from interpreter import Box
import pycocotools.mask as mask_utils
import alpha_clip
from segment_anything import sam_model_registry, SamPredictor
import numpy as np
import cv2
import matplotlib.pyplot as plt
import pickle
class Executor:
def __init__(self, device: str = "cpu", box_representation_method: str = "crop", method_aggregator: str = "max", enlarge_boxes: int = 0, expand_position_embedding: bool = False, square_size: bool = False, blur_std_dev: int = 100, cache_path: str = None, input_file: str = None) -> None:
IMPLEMENTED_METHODS = ["blur", "full", "gray"]
if any(m not in IMPLEMENTED_METHODS for m in box_representation_method.split(",")):
raise NotImplementedError
IMPLEMENTED_AGGREGATORS = ["max", "sum"]
if method_aggregator not in IMPLEMENTED_AGGREGATORS:
raise NotImplementedError
self.box_representation_method = box_representation_method
self.method_aggregator = method_aggregator
self.enlarge_boxes = enlarge_boxes
self.device = device
self.expand_position_embedding = expand_position_embedding
self.square_size = square_size
self.blur_std_dev = blur_std_dev
self.cache_path = cache_path
def preprocess_image(self, image: Image) -> List[torch.Tensor]:
return [preprocess(image) for preprocess in self.preprocesses]
def preprocess_mask(self, mask: Image) -> List[torch.Tensor]:
preprocess = self.preprocesses[0]
return preprocess.transforms[1](preprocess.transforms[0](mask))
def preprocess_text(self, text: str) -> torch.Tensor:
raise NotImplementedError
def call_model(self, model: torch.nn.Module, images: torch.Tensor, text: Union[torch.Tensor, Dict[str, torch.Tensor]]) -> torch.Tensor:
raise NotImplementedError
def tensorize_inputs(self, caption: str, image: Image, boxes: List[Box], image_name: str = None, image_pth: str = None) -> Tuple[List[torch.Tensor], torch.Tensor]:
images = []
for preprocess in self.preprocesses:
images.append([])
if 'aclip' in self.clip_type:
self.all_masks = []
read_save = False
if self.mask_path is not None: # load mask if cached
file_name = image_pth.split('/')[-1].split('.')[0]+'.pkl'
if os.path.exists(os.path.join(self.mask_path, file_name)):
all_rles = pickle.load(open(os.path.join(self.mask_path, file_name),'rb'))
for rle in all_rles:
mask = np.array(mask_utils.decode(rle), dtype=bool)
self.all_masks.append(mask)
read_save = True
if not read_save:
# use SAM to generate masks
self.predictor.set_image(np.array(image.convert('RGB')))
all_rles = []
for i in range(len(boxes)):
box = [
max(boxes[i].left-self.enlarge_boxes, 0),
max(boxes[i].top-self.enlarge_boxes, 0),
min(boxes[i].right+self.enlarge_boxes, image.width),
min(boxes[i].bottom+self.enlarge_boxes, image.height)
] # box prompt
input_box = np.array(box)
masks, _, _ = self.predictor.predict(
point_coords=None,
point_labels=None,
box=input_box[None, :],
multimask_output=False,
)
self.all_masks.append(masks[0])
rle = mask_utils.encode(np.array(masks[0][:, :, None], order='F', dtype="uint8"))[0]
rle["counts"] = rle["counts"].decode("utf-8")
all_rles.append(rle)
if self.mask_path is not None: # save mask
os.makedirs(self.mask_path, exist_ok=True)
pickle.dump(all_rles, open(os.path.join(self.mask_path, file_name),'wb'))
if self.cache_path is None or any([not os.path.exists(os.path.join(self.cache_path, "refcoco_val", model_name, "image", image_name, method_name+".pt")) for model_name in self.model_names for method_name in self.box_representation_method.split(',')]):
if "full" in self.box_representation_method: # original full image with alpha-map
for i in range(len(boxes)):
image_i = image.copy()
preprocessed_images = self.preprocess_image(image_i)
for j, img in enumerate(preprocessed_images):
images[j].append(img.to(self.device))
if "blur" in self.box_representation_method:
for i in range(len(boxes)):
image_i = image.copy()
mask = Image.new('L', image_i.size, 0)
draw = ImageDraw.Draw(mask)
box = (
max(boxes[i].left-self.enlarge_boxes, 0),
max(boxes[i].top-self.enlarge_boxes, 0),
min(boxes[i].right+self.enlarge_boxes, image_i.width),
min(boxes[i].bottom+self.enlarge_boxes, image_i.height)
)
if 'aclip' in self.clip_type:
width, height = image.size
for y in range(height):
for x in range(width):
if self.all_masks[i][y][x] == 1:
draw.point((x, y), fill=255)
else:
draw.rectangle([box[:2], box[2:]], fill=255)
blurred = image_i.filter(ImageFilter.GaussianBlur(self.blur_std_dev))
blurred.paste(image_i, mask=mask)
preprocessed_images = self.preprocess_image(blurred)
for j, img in enumerate(preprocessed_images):
images[j].append(img.to(self.device))
if "gray" in self.box_representation_method:
for i in range(len(boxes)):
image_i = image.copy()
mask_i = self.all_masks[i]
width, height = image.size
pixels = image_i.load()
for y in range(height):
for x in range(width):
if mask_i[y][x] == 0:
pixel_value = pixels[x, y]
gray_value = int(0.2989 * pixel_value[0] + 0.5870 * pixel_value[1] + 0.1140 * pixel_value[2])
pixels[x, y] = (gray_value, gray_value, gray_value)
preprocessed_images = self.preprocess_image(image_i)
for j, img in enumerate(preprocessed_images):
images[j].append(img.to(self.device))
imgs = [torch.stack(image_list) for image_list in images]
else:
imgs = [[] for _ in self.models]
text_tensor = self.preprocess_text(caption.lower()).to(self.device)
return imgs, text_tensor
@torch.no_grad()
def __call__(self, caption: str, image: Image, boxes: List[Box], image_name: str = None, image_pth=None) -> torch.Tensor:
images, text_tensor = self.tensorize_inputs(caption, image, boxes, image_name, image_pth)
all_logits_per_image = []
all_logits_per_text = []
box_representation_methods = self.box_representation_method.split(',')
caption_hash = hashlib.md5(caption.encode('utf-8')).hexdigest()
for model, images_t, model_name in zip(self.models, images, self.model_names):
self.image_feat_path = ""
if self.cache_path is not None:
text_cache_path = os.path.join(self.cache_path, "refcoco_val", model_name, "text"+("_shade" if self.box_representation_method == "shade" else ""))
image_feat_path = os.path.join(self.cache_path, "refcoco_val", model_name, "image", image_name)
self.image_feat_path = image_feat_path
image_features = None
text_features = None
if self.cache_path is not None and os.path.exists(os.path.join(self.cache_path, "refcoco_val", model_name)):
if os.path.exists(os.path.join(text_cache_path, caption_hash+".pt")):
text_features = torch.load(os.path.join(text_cache_path, caption_hash+".pt"), map_location=self.device)
if os.path.exists(image_feat_path):
if all([os.path.exists(os.path.join(image_feat_path, method_name+".pt")) for method_name in box_representation_methods]):
image_features = []
for method_name in box_representation_methods:
features = torch.load(os.path.join(image_feat_path, method_name+".pt"), map_location=self.device)
image_features.append(torch.stack([
features[(box.x, box.y, box.w, box.h)]
for box in boxes
]))
image_features = torch.stack(image_features)
image_features = image_features.view(-1, image_features.shape[-1])
logits_per_image, logits_per_text, image_features, text_features = self.call_model(model, images_t, text_tensor, image_features=image_features, text_features=text_features, boxes=boxes, image_pth=image_pth)
all_logits_per_image.append(logits_per_image)
all_logits_per_text.append(logits_per_text)
if self.cache_path is not None and image_name is not None and image_features is not None:
image_features = image_features.view(len(box_representation_methods), len(boxes), image_features.shape[-1])
if not os.path.exists(image_feat_path):
os.makedirs(image_feat_path)
for i in range(image_features.shape[0]):
method_name = box_representation_methods[i]
if not os.path.exists(os.path.join(image_feat_path, method_name+".pt")):
image_features_dict = {(box.x, box.y, box.w, box.h): image_features[i,j,:].cpu() for j, box in enumerate(boxes)}
torch.save(image_features_dict, os.path.join(image_feat_path, method_name+".pt"))
if self.cache_path is not None and not os.path.exists(os.path.join(text_cache_path, caption_hash+".pt")) and text_features is not None:
assert text_features.shape[0] == 1
if not os.path.exists(text_cache_path):
os.makedirs(text_cache_path)
torch.save(text_features.cpu(), os.path.join(text_cache_path, caption_hash+".pt"))
all_logits_per_image = torch.stack(all_logits_per_image).sum(0)
all_logits_per_text = torch.stack(all_logits_per_text).sum(0)
if self.method_aggregator == "max":
all_logits_per_text = all_logits_per_text.view(-1, len(boxes)).max(dim=0, keepdim=True)[0]
elif self.method_aggregator == "sum":
all_logits_per_text = all_logits_per_text.view(-1, len(boxes)).sum(dim=0, keepdim=True)
return all_logits_per_text.view(-1)
class ClipExecutor(Executor):
def __init__(self, clip_model: str = "ViT-B/32", device: str = "cpu", box_representation_method: str = "crop", method_aggregator: str = "max", enlarge_boxes: int = 0, expand_position_embedding: bool = False, square_size: bool = False, blur_std_dev: int = 100, cache_path: str = None, input_file: str = None, clip_type: str=None) -> None:
super().__init__(device, box_representation_method, method_aggregator, enlarge_boxes, expand_position_embedding, square_size, blur_std_dev, cache_path)
self.clip_models = clip_model.split(",")
self.model_names = [model_name.replace("/", "_") for model_name in self.clip_models]
self.models = []
self.preprocesses = []
self.data_name = input_file.split('/')[-1].split('.')[0]
self.mask_path = None
self.clip_type = clip_type
if self.cache_path is not None:
self.mask_path = os.path.join(self.cache_path, "refcoco_val", 'det_masks')
sam_checkpoint = "./ckpt/sam_vit_h_4b8939.pth"
model_type = "vit_h"
sam = sam_model_registry[model_type](checkpoint=sam_checkpoint)
sam.to(device=device)
self.predictor = SamPredictor(sam)
for model_name in self.clip_models:
if 'aclip' in self.clip_type:#using alpha-clip
self.mask_transform = transforms.Compose([
transforms.ToTensor(),
transforms.Resize((224, 224)),
transforms.Normalize(0.5, 0.26)
])
if model_name == 'ViT-B/16':
model, preprocess = alpha_clip.load("ViT-B/16", alpha_vision_ckpt_pth="./ckpt/grit1m/clip_b16_grit+mim_fultune_4xe.pth", device=device)
elif model_name == 'ViT-L/14':
model, preprocess = alpha_clip.load("ViT-L/14", alpha_vision_ckpt_pth="./ckpt/grit1m/clip_l14_grit+mim_fultune_6xe.pth", device=device)
else: model, preprocess = clip.load(model_name, device=device, jit=False)
self.models.append(model)
if self.square_size:
print("Square size!")
preprocess.transforms[0] = transforms.Resize((model.visual.input_resolution, model.visual.input_resolution), interpolation=transforms.InterpolationMode.BICUBIC)
self.preprocesses.append(preprocess)
self.models = torch.nn.ModuleList(self.models)
def preprocess_text(self, text: str) -> torch.Tensor:
if "aclip" in self.box_representation_method:
return alpha_clip.tokenize([text.lower()])
if "shade" in self.box_representation_method:
return clip.tokenize([text.lower()+" is in red color."])
return clip.tokenize(["a photo of "+text.lower()])
def call_model(self, model: torch.nn.Module, images: torch.Tensor, text: torch.Tensor, image_features: torch.Tensor = None, text_features: torch.Tensor = None, boxes=None, image_pth=None) -> torch.Tensor:
if image_features is None:
print('computing image features')
if 'aclip' not in self.clip_type:
image_features = model.encode_image(images)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
else:
image_features = []
if 'full' in self.box_representation_method:
aclip_images = images[:len(boxes)]
alphas = []
if os.path.exists(os.path.join(self.image_feat_path, 'full.pt')):
features = torch.load(os.path.join(self.image_feat_path, 'full.pt'), map_location=self.device)
aclip_image_features = torch.stack([
features[(box.x, box.y, box.w, box.h)]
for box in boxes
])
else:
for i in range(len(self.all_masks)):
binary_mask = self.all_masks[i]
alpha = self.mask_transform((binary_mask * 255).astype(np.uint8))
alpha = alpha.half().cuda().unsqueeze(dim=0)
alphas.append(alpha)
alphas = torch.cat(alphas, dim=0)
aclip_images = aclip_images.half()
aclip_image_features = model.visual(aclip_images, alphas) # using alpha channels
images = images[len(boxes):]
image_features.append(aclip_image_features)
if 'blur' in self.box_representation_method:
if os.path.exists(os.path.join(self.image_feat_path, 'blur.pt')):
features = torch.load(os.path.join(self.image_feat_path, 'blur.pt'), map_location=self.device)
ablur_images_features = torch.stack([
features[(box.x, box.y, box.w, box.h)]
for box in boxes
])
else:
ablur_images = images[:len(boxes)]
alphas = []
for i in range(len(self.all_masks)):
binary_mask = self.all_masks[i]
alpha = self.mask_transform((binary_mask * 255).astype(np.uint8))
alpha = alpha.half().cuda().unsqueeze(dim=0)
alphas.append(alpha)
alphas = torch.cat(alphas, dim=0)
ablur_images = ablur_images.half()
ablur_images_features = model.visual(ablur_images, alphas)
images = images[len(boxes):]
image_features.append(ablur_images_features)
if 'gray' in self.box_representation_method:
if os.path.exists(os.path.join(self.image_feat_path, 'gray.pt')):
features = torch.load(os.path.join(self.image_feat_path, 'gray.pt'), map_location=self.device)
gray_images_features = torch.stack([
features[(box.x, box.y, box.w, box.h)]
for box in boxes
])
else:
gray_images = images[:len(boxes)]
alphas = []
for i in range(len(self.all_masks)):
binary_mask = self.all_masks[i]
alpha = self.mask_transform((binary_mask * 255).astype(np.uint8))
alpha = alpha.half().cuda().unsqueeze(dim=0)
alphas.append(alpha)
alphas = torch.cat(alphas, dim=0)
gray_images = gray_images.half()
gray_images_features = model.visual(gray_images, alphas)
images = images[len(boxes):]
image_features.append(gray_images_features)
image_features = torch.cat(image_features, dim=0)
image_features = image_features / image_features.norm(dim=-1, keepdim=True)
if text_features is None:
print('computing text features')
text_features = model.encode_text(text)
# normalized features
text_features = text_features / text_features.norm(dim=-1, keepdim=True)
# cosine similarity as logits
logit_scale = model.logit_scale.exp()
logits_per_image = logit_scale * image_features @ text_features.t()
logits_per_text = logits_per_image.t()
return logits_per_image, logits_per_text, image_features, text_features
def __call__(self, caption: str, image: Image, boxes: List[Box], image_name: str = None, image_pth=None) -> torch.Tensor:
if self.expand_position_embedding:
original_preprocesses = self.preprocesses
new_preprocesses = []
original_position_embeddings = []
for model_name, model, preprocess in zip(self.clip_models, self.models, self.preprocesses):
if "RN" in model_name:
model_spatial_dim = int((model.visual.attnpool.positional_embedding.shape[0]-1)**0.5)
patch_size = model.visual.input_resolution // model_spatial_dim
original_positional_embedding = model.visual.attnpool.positional_embedding.clone()
model.visual.attnpool.positional_embedding = torch.nn.Parameter(torch.nn.functional.interpolate(
model.visual.attnpool.positional_embedding[1:,:].permute(1, 0).view(1, -1, model_spatial_dim, model_spatial_dim),
size=(image.height // patch_size, image.width // patch_size),
mode='bicubic',
align_corners=False
).squeeze(0).permute(1, 2, 0).view(-1, original_positional_embedding.shape[-1]))
model.visual.attnpool.positional_embedding = torch.nn.Parameter(torch.cat((
original_positional_embedding[:1,:],
model.visual.attnpool.positional_embedding
), dim=0))
transform = transforms.Compose([
transforms.Resize(((image.height // patch_size)*patch_size, (image.width // patch_size)*patch_size), interpolation=Image.BICUBIC),
lambda image: image.convert("RGB"),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
else:
model_spatial_dim = int((model.visual.positional_embedding.shape[0]-1)**0.5)
patch_size = model.visual.input_resolution // model_spatial_dim
original_positional_embedding = model.visual.positional_embedding.clone()
model.visual.positional_embedding = torch.nn.Parameter(torch.nn.functional.interpolate(
model.visual.positional_embedding[1:,:].permute(1, 0).view(1, -1, model_spatial_dim, model_spatial_dim),
size=(image.height // patch_size, image.width // patch_size),
mode='bicubic',
align_corners=False
).squeeze(0).permute(1, 2, 0).view(-1, original_positional_embedding.shape[-1]))
model.visual.positional_embedding = torch.nn.Parameter(torch.cat((
original_positional_embedding[:1,:],
model.visual.positional_embedding
), dim=0))
transform = transforms.Compose([
transforms.Resize(((image.height // patch_size)*patch_size, (image.width // patch_size)*patch_size), interpolation=Image.BICUBIC),
lambda image: image.convert("RGB"),
transforms.ToTensor(),
transforms.Normalize((0.48145466, 0.4578275, 0.40821073), (0.26862954, 0.26130258, 0.27577711)),
])
new_preprocesses.append(transform)
original_position_embeddings.append(original_positional_embedding)
self.preprocesses = new_preprocesses
result = super().__call__(caption, image, boxes, image_name, image_pth)
if self.expand_position_embedding:
self.preprocesses = original_preprocesses
for model, model_name, pos_embedding in zip(self.models, self.clip_models, original_position_embeddings):
if "RN" in model_name:
model.visual.attnpool.positional_embedding = torch.nn.Parameter(pos_embedding)
else:
model.visual.positional_embedding = torch.nn.Parameter(pos_embedding)
return result
|