File size: 11,902 Bytes
482ab8a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
import copy
import datetime
import json
import math
import os
import random
import signal
import subprocess
import sys
import time
import warnings
from collections import defaultdict
from shutil import copy2
from typing import Dict

import numpy as np
import prettytable as pt
import torch
import torch.nn as nn
from termcolor import cprint
from torch.utils.tensorboard import SummaryWriter


class Logger(object):
    def __init__(self, filename, stream=sys.stdout):
        self.terminal = stream
        self.log = open(filename, "a")

    def write(self, message):
        self.terminal.write(message)
        self.log.write(message)

    def flush(self):
        pass


class AverageMeter(object):
    """Computes and stores the average and current value"""

    def __init__(self):
        self.sum = 0
        self.avg = 0
        self.val = 0
        self.count = 0

    def reset(self):
        self.sum = 0
        self.avg = 0
        self.val = 0
        self.count = 0

    def update(self, val, n=1):
        self.val = val
        self.sum = self.sum + val * n
        self.count = self.count + n
        self.avg = self.sum / self.count

    def __str__(self):
        return f"{self.avg: .5f}"


def get_sha():
    """Get git current status"""
    cwd = os.path.dirname(os.path.abspath(__file__))

    def _run(command):
        return subprocess.check_output(command, cwd=cwd).decode("ascii").strip()

    sha = "N/A"
    diff = "clean"
    branch = "N/A"
    message = "N/A"
    try:
        sha = _run(["git", "rev-parse", "HEAD"])
        sha = sha[:8]
        subprocess.check_output(["git", "diff"], cwd=cwd)
        diff = _run(["git", "diff-index", "HEAD"])
        diff = "has uncommited changes" if diff else "clean"
        branch = _run(["git", "rev-parse", "--abbrev-ref", "HEAD"])
        message = _run(["git", "log", "--pretty=format:'%s'", sha, "-1"]).replace(
            "'", ""
        )
    except Exception:
        pass

    return {"sha": sha, "status": diff, "branch": branch, "prev_commit": message}


def setup_env(opt):
    if opt.eval or opt.debug:
        opt.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
        torch.autograd.set_detect_anomaly(True)
        return None

    dir_name = opt.dir_name
    save_root_path = opt.save_root_path
    if not os.path.exists(save_root_path):
        os.mkdir(save_root_path)

    # deterministic
    torch.manual_seed(opt.seed)
    np.random.seed(opt.seed)
    random.seed(opt.seed)
    torch.backends.cudnn.deterministic = True
    torch.backends.cudnn.benchmark = True

    # mkdir subdirectories
    checkpoint = "checkpoint"
    if not os.path.exists(os.path.join(save_root_path, dir_name)):
        os.mkdir(os.path.join(save_root_path, dir_name))
        os.mkdir(os.path.join(save_root_path, dir_name, checkpoint))

    # save log
    sys.stdout = Logger(os.path.join(save_root_path, dir_name, "log.log"), sys.stdout)
    sys.stderr = Logger(os.path.join(save_root_path, dir_name, "error.log"), sys.stderr)

    # save parameters
    params = copy.deepcopy(vars(opt))
    params.pop("device")
    with open(os.path.join(save_root_path, dir_name, "params.json"), "w") as f:
        json.dump(params, f)

    # print info
    print(
        "Running on {}, PyTorch version {}, files will be saved at {}".format(
            opt.device, torch.__version__, os.path.join(save_root_path, dir_name)
        )
    )
    print("Devices:")
    for i in range(torch.cuda.device_count()):
        print("    {}:".format(i), torch.cuda.get_device_name(i))
    print(f"Git: {get_sha()}.")

    # return tensorboard summarywriter
    return SummaryWriter("{}/{}/".format(opt.save_root_path, opt.dir_name))


class MetricLogger(object):
    def __init__(self, delimiter=" ", writer=None, suffix=None):
        self.meters = defaultdict(AverageMeter)
        self.delimiter = delimiter
        self.writer = writer
        self.suffix = suffix

    def update(self, **kwargs):
        for k, v in kwargs.items():
            if isinstance(v, torch.Tensor):
                v = v.item()
            assert isinstance(v, (float, int)), f"Unsupport type {type(v)}."
            self.meters[k].update(v)

    def add_meter(self, name, meter):
        self.meters[name] = meter

    def get_meters(self):
        result = {}
        for k, v in self.meters.items():
            result[k] = v.avg
        return result

    def prepend_subprefix(self, subprefix: str):
        old_keys = list(self.meters.keys())
        for k in old_keys:
            self.meters[k.replace("/", f"/{subprefix}")] = self.meters[k]
        for k in old_keys:
            del self.meters[k]

    def log_every(self, iterable, print_freq=10, header=""):
        i = 0
        start_time = time.time()
        end = time.time()
        iter_time = AverageMeter()
        space_fmt = ":" + str(len(str(len(iterable)))) + "d"
        log_msg = self.delimiter.join(
            [
                header,
                "[{0" + space_fmt + "}/{1}]",
                "eta: {eta}",
                "{meters}",
                "iter time: {time}s",
            ]
        )
        for obj in iterable:
            yield i, obj
            iter_time.update(time.time() - end)
            if (i + 1) % print_freq == 0 or i == len(iterable) - 1:
                eta_seconds = iter_time.avg * (len(iterable) - i)
                eta_string = str(datetime.timedelta(seconds=int(eta_seconds)))
                print(
                    log_msg.format(
                        i + 1,
                        len(iterable),
                        eta=eta_string,
                        meters=str(self),
                        time=str(iter_time),
                    ).replace("  ", " ")
                )
            i += 1
            end = time.time()
        total_time = time.time() - start_time
        total_time_str = str(datetime.timedelta(seconds=int(total_time)))
        print(
            "{} Total time: {} ({:.4f}s / it)".format(
                header, total_time_str, total_time / len(iterable)
            )
        )

    def write_tensorboard(self, step):
        if self.writer is not None:
            for k, v in self.meters.items():
                # if self.suffix:
                #     self.writer.add_scalar(
                #         '{}/{}'.format(k, self.suffix), v.avg, step)
                # else:
                self.writer.add_scalar(k, v.avg, step)

    def stat_table(self):
        tb = pt.PrettyTable(field_names=["Metrics", "Values"])
        for name, meter in self.meters.items():
            tb.add_row([name, str(meter)])
        return tb.get_string()

    def __getattr__(self, attr):
        if attr in self.meters:
            return self.meters[attr]
        if attr in self.__dict__:
            return self.__dict__[attr]
        raise AttributeError(
            "'{}' object has no attribute '{}'".format(type(self).__name__, attr)
        )

    def __str__(self):
        loss_str = []
        for name, meter in self.meters.items():
            loss_str.append("{}: {}".format(name, str(meter)))
        return self.delimiter.join(loss_str).replace("  ", " ")


def save_model(path, model: nn.Module, epoch, opt, performance=None):
    if not opt.debug:
        try:
            torch.save(
                {
                    "model": model.state_dict(),
                    "epoch": epoch,
                    "opt": opt,
                    "performance": performance,
                },
                path,
            )
        except Exception as e:
            cprint("Failed to save {} because {}".format(path, str(e)))


def resume_from(model: nn.Module, resume_path: str):
    checkpoint = torch.load(resume_path, map_location="cpu")
    state_dict = checkpoint["model"]
    performance = checkpoint["performance"]
    try:
        model.load_state_dict(state_dict)
    except Exception as e:
        model.load_state_dict(state_dict, strict=False)
        cprint("Failed to load full model because {}".format(str(e)), "red")
        time.sleep(3)
    print(f"{resume_path} model loaded. It performance is")
    if performance is not None:
        for k, v in performance.items():
            print(f"{k}: {v}")


def update_record(result: Dict, epoch: int, opt, file_name: str = "latest_record"):
    if not opt.debug:
        # save txt file
        tb = pt.PrettyTable(field_names=["Metrics", "Values"])
        with open(
            os.path.join(opt.save_root_path, opt.dir_name, f"{file_name}.txt"), "w"
        ) as f:
            f.write(f"Performance at {epoch}-th epoch:\n\n")
            for k, v in result.items():
                tb.add_row([k, "{:.7f}".format(v)])
            f.write(tb.get_string())

        # save json file
        result["epoch"] = epoch
        with open(
            os.path.join(opt.save_root_path, opt.dir_name, f"{file_name}.json"), "w"
        ) as f:
            json.dump(result, f)


def pixel_acc(pred, label):
    """Compute pixel-level prediction accuracy."""
    warnings.warn("I am not sure if this implementation is correct.")

    label_size = label.shape[-2:]
    if pred.shape[-2] != label_size:
        pred = torch.nn.functional.interpolate(
            pred, size=label_size, mode="bilinear", align_corners=False
        )

    pred[torch.where(pred > 0.5)] = 1
    pred[torch.where(pred <= 0.5)] = 0
    correct = torch.sum((pred + label) == 1.0)
    total = torch.numel(pred)
    return correct / (total + 1e-8)


def calculate_pixel_f1(pd, gt, prefix="", suffix=""):
    if np.max(pd) == np.max(gt) and np.max(pd) == 0:
        f1, iou = 1.0, 1.0
        return f1, 0.0, 0.0
    seg_inv, gt_inv = np.logical_not(pd), np.logical_not(gt)
    true_pos = float(np.logical_and(pd, gt).sum())
    false_pos = np.logical_and(pd, gt_inv).sum()
    false_neg = np.logical_and(seg_inv, gt).sum()
    f1 = 2 * true_pos / (2 * true_pos + false_pos + false_neg + 1e-6)
    precision = true_pos / (true_pos + false_pos + 1e-6)
    recall = true_pos / (true_pos + false_neg + 1e-6)

    return {
        f"{prefix}pixel_f1{suffix}": f1,
        f"{prefix}pixel_prec{suffix}": precision,
        f"{prefix}pixel_recall{suffix}": recall,
    }


def calculate_img_score(pd, gt, prefix="", suffix="", eta=1e-6):
    seg_inv, gt_inv = np.logical_not(pd), np.logical_not(gt)
    true_pos = float(np.logical_and(pd, gt).sum())
    false_pos = float(np.logical_and(pd, gt_inv).sum())
    false_neg = float(np.logical_and(seg_inv, gt).sum())
    true_neg = float(np.logical_and(seg_inv, gt_inv).sum())
    acc = (true_pos + true_neg) / (true_pos + true_neg + false_neg + false_pos + eta)
    sen = true_pos / (true_pos + false_neg + eta)
    spe = true_neg / (true_neg + false_pos + eta)
    precision = true_pos / (true_pos + false_pos + eta)
    recall = true_pos / (true_pos + false_neg + eta)
    try:
        f1 = 2 * sen * spe / (sen + spe)
    except:
        f1 = -math.inf

    return {
        f"{prefix}image_acc{suffix}": acc,
        f"{prefix}image_sen{suffix}": sen,
        f"{prefix}image_spe{suffix}": spe,
        f"{prefix}image_f1{suffix}": f1,
        f"{prefix}image_true_pos{suffix}": true_pos,
        f"{prefix}image_true_neg{suffix}": true_neg,
        f"{prefix}image_false_pos{suffix}": false_pos,
        f"{prefix}image_false_neg{suffix}": false_neg,
        f"{prefix}image_prec{suffix}": precision,
        f"{prefix}image_recall{suffix}": recall,
    }


class timeout:
    def __init__(self, seconds=1, error_message="Timeout"):
        self.seconds = seconds
        self.error_message = error_message

    def handle_timeout(self, signum, frame):
        raise TimeoutError(self.error_message)

    def __enter__(self):
        signal.signal(signal.SIGALRM, self.handle_timeout)
        signal.alarm(self.seconds)

    def __exit__(self, type, value, traceback):
        signal.alarm(0)