File size: 6,381 Bytes
46ffa30
 
 
 
cdb537e
bc21832
0ed2b71
cdb537e
bc21832
cdb537e
46ffa30
 
 
bc21832
 
46ffa30
 
8cd0b56
528bd83
 
bc21832
91f8619
46ffa30
2354f1b
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
91f8619
 
 
 
 
cdb537e
2354f1b
 
 
 
 
 
8cd0b56
 
 
bc21832
8cd0b56
 
 
46ffa30
 
 
0ed2b71
 
 
 
 
 
 
 
 
 
 
 
 
 
46ffa30
 
cdb537e
46ffa30
cdb537e
 
46ffa30
 
 
 
 
 
 
 
cdb537e
 
46ffa30
cdb537e
46ffa30
 
 
bc21832
 
 
 
 
 
 
46ffa30
cdb537e
 
 
bc21832
cdb537e
 
 
a19a543
3f553b1
a19a543
46ffa30
3f553b1
 
46ffa30
 
 
 
 
 
3f553b1
 
 
 
8cd0b56
3f553b1
46ffa30
cdb537e
3f553b1
 
bc21832
 
 
 
 
 
cdb537e
bc21832
 
 
 
cdb537e
bc21832
 
0ed2b71
 
 
 
bc21832
0ed2b71
 
 
 
 
 
 
 
3f553b1
 
0ed2b71
3f553b1
 
 
 
0ed2b71
 
3f553b1
cdb537e
3f553b1
 
 
 
 
 
 
46ffa30
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
import time

import psutil
import streamlit as st
import torch
from langdetect import detect
from transformers import TextIteratorStreamer

from default_texts import default_texts
from generator import GeneratorFactory

device = torch.cuda.device_count() - 1

TRANSLATION_EN_TO_NL = "translation_en_to_nl"
TRANSLATION_NL_TO_EN = "translation_nl_to_en"

GENERATOR_LIST = [
    {
        "model_name": "yhavinga/ul2-base-en-nl",
        "desc": "UL2 base en->nl",
        "task": TRANSLATION_EN_TO_NL,
        "split_sentences": False,
    },
    # {
    #     "model_name": "yhavinga/ul2-large-en-nl",
    #     "desc": "UL2 large en->nl",
    #     "task": TRANSLATION_EN_TO_NL,
    #     "split_sentences": False,
    # },
    # {
    #     "model_name": "Helsinki-NLP/opus-mt-en-nl",
    #     "desc": "Opus MT en->nl",
    #     "task": TRANSLATION_EN_TO_NL,
    #     "split_sentences": True,
    # },
    # {
    #     "model_name": "Helsinki-NLP/opus-mt-nl-en",
    #     "desc": "Opus MT nl->en",
    #     "task": TRANSLATION_NL_TO_EN,
    #     "split_sentences": True,
    # },
    {
        "model_name": "yhavinga/t5-small-24L-ccmatrix-multi",
        "desc": "T5 small nl24 ccmatrix nl-en",
        "task": TRANSLATION_NL_TO_EN,
        "split_sentences": True,
    },
    # {
    #     "model_name": "yhavinga/byt5-small-ccmatrix-en-nl",
    #     "desc": "ByT5 small ccmatrix en->nl",
    #     "task": TRANSLATION_EN_TO_NL,
    #     "split_sentences": True,
    # },
    # {
    #     "model_name": "yhavinga/t5-base-36L-ccmatrix-multi",
    #     "desc": "T5 base nl36 ccmatrix en->nl",
    #     "task": TRANSLATION_EN_TO_NL,
    #     "split_sentences": True,
    # },
    # {
]


class StreamlitTextIteratorStreamer(TextIteratorStreamer):
    def __init__(
        self, output_placeholder, tokenizer, skip_prompt=False, **decode_kwargs
    ):
        super().__init__(tokenizer, skip_prompt, **decode_kwargs)
        self.output_placeholder = output_placeholder
        self.output_text = ""

    def on_finalized_text(self, text: str, stream_end: bool = False):
        self.output_text += text
        self.output_placeholder.markdown(self.output_text, unsafe_allow_html=True)
        super().on_finalized_text(text, stream_end)


def main():
    st.set_page_config(  # Alternate names: setup_page, page, layout
        page_title="Rosetta en/nl",  # String or None. Strings get appended with "โ€ข Streamlit".
        layout="wide",  # Can be "centered" or "wide". In the future also "dashboard", etc.
        initial_sidebar_state="auto",  # Can be "auto", "expanded", "collapsed"
        page_icon="๐Ÿ“‘",  # String, anything supported by st.image, or None.
    )

    if "generators" not in st.session_state:
        st.session_state["generators"] = GeneratorFactory(GENERATOR_LIST)
    generators = st.session_state["generators"]

    with open("style.css") as f:
        st.markdown(f"<style>{f.read()}</style>", unsafe_allow_html=True)

    st.sidebar.image("rosetta.png", width=200)
    st.sidebar.markdown(
        """# Rosetta
    Vertaal van en naar Engels"""
    )

    default_text = st.sidebar.radio(
        "Change default text",
        tuple(default_texts.keys()),
        index=0,
    )
    if default_text or "prompt_box" not in st.session_state:
        st.session_state["prompt_box"] = default_texts[default_text]["text"]

    # create a left and right column
    left, right = st.columns(2)
    text_area = left.text_area("Enter text", st.session_state.prompt_box, height=500)
    st.session_state["text"] = text_area

    # Sidebar parameters
    st.sidebar.title("Parameters:")
    num_beams = st.sidebar.number_input("Num beams", min_value=1, max_value=10, value=1)
    num_beam_groups = st.sidebar.number_input(
        "Num beam groups", min_value=1, max_value=10, value=1
    )
    length_penalty = st.sidebar.number_input(
        "Length penalty", min_value=0.0, max_value=2.0, value=1.2, step=0.1
    )
    st.sidebar.markdown(
        """For an explanation of the parameters, head over to the [Huggingface blog post about text generation](https://huggingface.co/blog/how-to-generate)
and the [Huggingface text generation interface doc](https://huggingface.co/transformers/main_classes/model.html?highlight=generate#transformers.generation_utils.GenerationMixin.generate).
"""
    )
    params = {
        "num_beams": num_beams,
        "num_beam_groups": num_beam_groups,
        "length_penalty": length_penalty,
        "early_stopping": True,
    }

    if left.button("Run"):
        memory = psutil.virtual_memory()

        language = detect(st.session_state.text)
        if language == "en":
            task = TRANSLATION_EN_TO_NL
        elif language == "nl":
            task = TRANSLATION_NL_TO_EN
        else:
            left.error(f"Language {language} not supported")
            return

        # Num beam groups should be a divisor of num beams
        if num_beams % num_beam_groups != 0:
            left.error("Num beams should be a multiple of num beam groups")
            return

        streaming_enabled = num_beams == 1
        if not streaming_enabled:
            left.markdown("*`num_beams > 1` so streaming is disabled*")

        for generator in generators.filter(task=task):
            model_container = right.container()
            model_container.markdown(f"๐Ÿงฎ **Model `{generator}`**")
            output_placeholder = model_container.empty()
            streamer = (
                StreamlitTextIteratorStreamer(output_placeholder, generator.tokenizer)
                if streaming_enabled
                else None
            )
            time_start = time.time()
            result, params_used = generator.generate(
                text=st.session_state.text, streamer=streamer, **params
            )
            time_end = time.time()
            time_diff = time_end - time_start

            if not streaming_enabled:
                right.write(result.replace("\n", "  \n"))
            text_line = ", ".join([f"{k}={v}" for k, v in params_used.items()])
            right.markdown(f"    ๐Ÿ•™ *generated in {time_diff:.2f}s, `{text_line}`*")

        st.write(
            f"""
        ---
        *Memory: {memory.total / 10**9:.2f}GB, used: {memory.percent}%, available: {memory.available / 10**9:.2f}GB*
        """
        )


if __name__ == "__main__":
    main()