File size: 10,383 Bytes
a104d3f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
import torch
from torch import nn

__all__ = ["iresnet18", "iresnet34", "iresnet50", "iresnet100", "iresnet200"]


def conv3x3(in_planes, out_planes, stride=1, groups=1, dilation=1):
    """3x3 convolution with padding"""
    return nn.Conv2d(
        in_planes,
        out_planes,
        kernel_size=3,
        stride=stride,
        padding=dilation,
        groups=groups,
        bias=False,
        dilation=dilation,
    )


def conv1x1(in_planes, out_planes, stride=1):
    """1x1 convolution"""
    return nn.Conv2d(in_planes, out_planes, kernel_size=1, stride=stride, bias=False)


class IBasicBlock(nn.Module):
    expansion = 1

    def __init__(
        self,
        inplanes,
        planes,
        stride=1,
        downsample=None,
        groups=1,
        base_width=64,
        dilation=1,
    ):
        super(IBasicBlock, self).__init__()
        if groups != 1 or base_width != 64:
            raise ValueError("BasicBlock only supports groups=1 and base_width=64")
        if dilation > 1:
            raise NotImplementedError("Dilation > 1 not supported in BasicBlock")
        self.bn1 = nn.BatchNorm2d(inplanes, eps=1e-05,)
        self.conv1 = conv3x3(inplanes, planes)
        self.bn2 = nn.BatchNorm2d(planes, eps=1e-05,)
        self.prelu = nn.PReLU(planes)
        self.conv2 = conv3x3(planes, planes, stride)
        self.bn3 = nn.BatchNorm2d(planes, eps=1e-05,)
        self.downsample = downsample
        self.stride = stride

    def forward(self, x):
        identity = x
        out = self.bn1(x)
        out = self.conv1(out)
        out = self.bn2(out)
        out = self.prelu(out)
        out = self.conv2(out)
        out = self.bn3(out)
        if self.downsample is not None:
            identity = self.downsample(x)
        out += identity
        return out


class IResNet(nn.Module):
    def __init__(
        self,
        block,
        layers,
        dropout=0,
        num_features=512,
        zero_init_residual=False,
        groups=1,
        width_per_group=64,
        replace_stride_with_dilation=None,
        fp16=False,
        fc_scale = 7 * 7,
    ):
        super(IResNet, self).__init__()
        self.fp16 = fp16
        self.inplanes = 64
        self.dilation = 1
        self.fc_scale = fc_scale
        if replace_stride_with_dilation is None:
            replace_stride_with_dilation = [False, False, False]
        if len(replace_stride_with_dilation) != 3:
            raise ValueError(
                "replace_stride_with_dilation should be None "
                "or a 3-element tuple, got {}".format(replace_stride_with_dilation)
            )
        self.groups = groups
        self.base_width = width_per_group
        self.conv1 = nn.Conv2d(
            3, self.inplanes, kernel_size=3, stride=1, padding=1, bias=False
        )
        self.bn1 = nn.BatchNorm2d(self.inplanes, eps=1e-05)
        self.prelu = nn.PReLU(self.inplanes)
        self.layer1 = self._make_layer(block, 64, layers[0], stride=2)
        self.layer2 = self._make_layer(
            block, 128, layers[1], stride=2, dilate=replace_stride_with_dilation[0]
        )
        self.layer3 = self._make_layer(
            block, 256, layers[2], stride=2, dilate=replace_stride_with_dilation[1]
        )
        self.layer4 = self._make_layer(
            block, 512, layers[3], stride=2, dilate=replace_stride_with_dilation[2]
        )
        self.bn2 = nn.BatchNorm2d(512 * block.expansion, eps=1e-05,)
        self.dropout = nn.Dropout(p=dropout, inplace=True)
        self.fc = nn.Linear(512 * block.expansion * self.fc_scale, num_features)
        self.features = nn.BatchNorm1d(num_features, eps=1e-05)
        nn.init.constant_(self.features.weight, 1.0)
        self.features.weight.requires_grad = False

        for m in self.modules():
            if isinstance(m, nn.Conv2d):
                nn.init.normal_(m.weight, 0, 0.1)
            elif isinstance(m, (nn.BatchNorm2d, nn.GroupNorm)):
                nn.init.constant_(m.weight, 1)
                nn.init.constant_(m.bias, 0)

        if zero_init_residual:
            for m in self.modules():
                if isinstance(m, IBasicBlock):
                    nn.init.constant_(m.bn2.weight, 0)

    def _make_layer(self, block, planes, blocks, stride=1, dilate=False):
        downsample = None
        previous_dilation = self.dilation
        if dilate:
            self.dilation *= stride
            stride = 1
        if stride != 1 or self.inplanes != planes * block.expansion:
            downsample = nn.Sequential(
                conv1x1(self.inplanes, planes * block.expansion, stride),
                nn.BatchNorm2d(planes * block.expansion, eps=1e-05,),
            )
        layers = []
        layers.append(
            block(
                self.inplanes,
                planes,
                stride,
                downsample,
                self.groups,
                self.base_width,
                previous_dilation,
            )
        )
        self.inplanes = planes * block.expansion
        for _ in range(1, blocks):
            layers.append(
                block(
                    self.inplanes,
                    planes,
                    groups=self.groups,
                    base_width=self.base_width,
                    dilation=self.dilation,
                )
            )

        return nn.Sequential(*layers)

    def forward(self, x):
        with torch.cuda.amp.autocast(self.fp16):
            x = self.conv1(x)
            x = self.bn1(x)
            x = self.prelu(x)
            x = self.layer1(x)
            x = self.layer2(x)
            x = self.layer3(x)
            x = self.layer4(x)
            x = self.bn2(x)
            # print(x.shape)
            x = torch.flatten(x, 1)
            x = self.dropout(x)
        x = self.fc(x.float() if self.fp16 else x)
        x = self.features(x)
        return x


def _iresnet(arch, block, layers, pretrained, progress, **kwargs):
    model = IResNet(block, layers, **kwargs)
    if pretrained:
        model_dir = {
            'iresnet18': './weights/r18-backbone.pth',
            'iresnet34': './weights/r34-backbone.pth',
            'iresnet50': './weights/r50-backbone.pth',
            'iresnet100': './weights/r100-backbone.pth',
        }
        pre_trained_weights = torch.load(model_dir[arch], map_location=torch.device('cpu'))

        tmp_dict = {}
        for key in pre_trained_weights:
            # if 'features' in key or 'fc' in key:
            #     print('skip %s' % key)
            #     continue
            tmp_dict[key] = pre_trained_weights[key]

        # get 'iresnet' model layers which don't exist in 'arcxx' and insert to tmp
        model_dict = model.state_dict()
        for key in model_dict:
            if key not in tmp_dict:
                tmp_dict[key] = model_dict[key]

        model.load_state_dict(tmp_dict, strict=False)
        print("load pre-trained iresnet from %s" % model_dir[arch])

    return model


def iresnet18(pretrained=False, progress=True, **kwargs):
    return _iresnet(
        "iresnet18", IBasicBlock, [2, 2, 2, 2], pretrained, progress, **kwargs
    )


def iresnet34(pretrained=False, progress=True, **kwargs):
    return _iresnet(
        "iresnet34", IBasicBlock, [3, 4, 6, 3], pretrained, progress, **kwargs
    )


def iresnet50(pretrained=False, progress=True, **kwargs):
    return _iresnet(
        "iresnet50", IBasicBlock, [3, 4, 14, 3], pretrained, progress, **kwargs
    )


def iresnet100(pretrained=False, progress=True, **kwargs):
    return _iresnet(
        "iresnet100", IBasicBlock, [3, 13, 30, 3], pretrained, progress, **kwargs
    )


def iresnet200(pretrained=False, progress=True, **kwargs):
    return _iresnet(
        "iresnet200", IBasicBlock, [6, 26, 60, 6], pretrained, progress, **kwargs
    )


@torch.no_grad()
def identification(folder: str = './images', target_idx: int = 0):
    import os
    from PIL import Image
    import torch
    import torchvision.transforms as transforms
    import torch.nn.functional as F
    import kornia
    import numpy as np

    os.makedirs('crop', exist_ok=True)
    img_list = os.listdir(folder)
    img_list.sort()
    n = len(img_list)
    trans = transforms.Compose([
        transforms.Resize(256),
        transforms.CenterCrop(224),
        transforms.ToTensor(),
        # transforms.Normalize(mean=[0.5, 0.5, 0.5], std=[0.5, 0.5, 0.5])
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225])
    ])
    trans_matrix = torch.tensor(
            [[[1.07695457, -0.03625215, -1.56352194],
               [0.03625215, 1.07695457, -5.32134629]]],
            requires_grad=False).float().cuda()

    fid_model = iresnet50(pretrained=True).cuda().eval()

    def save_tensor_to_img(tensor: torch.Tensor, path: str, scale=255):
        tensor = tensor.permute(0, 2, 3, 1)[0]  # in [0,1]
        tensor = tensor.clamp(0, 1)
        tensor = tensor * scale
        tensor_np = tensor.cpu().numpy().astype(np.uint8)
        if tensor_np.shape[-1] == 1:  # channel dim
            tensor_np = tensor_np.repeat(3, axis=-1)
        tensor_img = Image.fromarray(tensor_np)
        tensor_img.save(path)

    feats = torch.zeros((n, 512), dtype=torch.float32).cuda()
    for idx, img_path in enumerate(img_list):
        img_pil = Image.open(os.path.join(folder, img_path)).convert('RGB')
        img_tensor = trans(img_pil).unsqueeze(0).cuda()

        # img_tensor = kornia.geometry.transform.warp_affine(img_tensor, trans_matrix, (256, 256))
        save_tensor_to_img(img_tensor / 2 + 0.5, path=os.path.join('./crop', img_path))
        img_tensor = F.interpolate(img_tensor, size=112, mode="bilinear", align_corners=True)  # to 112

        feat = fid_model(img_tensor)
        feats[idx] = feat

    target_feat = feats[target_idx].unsqueeze(0)
    cosine_sim = F.cosine_similarity(target_feat, feats, 1)
    print(cosine_sim.shape)

    print('====== similarity with %s ======' % img_list[target_idx])
    for idx in range(n):
        print('[%d] %s = %.2f' % (idx, img_list[idx], float(cosine_sim[idx].cpu())))


if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser(description="arcface")
    parser.add_argument("-i", "--target_idx", type=int, default=0)
    args = parser.parse_args()

    identification(target_idx=args.target_idx)