File size: 6,621 Bytes
523fb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbf97aa
523fb10
 
 
 
 
 
 
 
 
 
 
 
127df95
523fb10
 
 
 
 
 
 
 
b9be4e6
523fb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
4f18a93
 
 
 
 
 
 
82206b3
4f18a93
82206b3
4f18a93
 
 
523fb10
4f18a93
 
523fb10
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f057d66
b9be4e6
f057d66
b9be4e6
523fb10
b9be4e6
523fb10
b9be4e6
523fb10
 
 
b9be4e6
523fb10
 
b9be4e6
523fb10
b9be4e6
523fb10
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
import os
import torch
import torch.nn as nn
import torch.nn.functional as F
import cv2
import numpy as np

from third_party.bisenet.bisenet import BiSeNet
from third_party.GPEN.infer_image import GPENImageInfer


make_abs_path = lambda fn: os.path.abspath(os.path.join(os.path.dirname(os.path.realpath(__file__)), fn))


class Trick(object):
    def __init__(self):
        self.gpen_model = None
        self.mouth_helper = None

    @staticmethod
    def get_any_mask(img, par=None, normalized=False):
        # [0, 'background', 1 'skin', 2 'l_brow', 3 'r_brow', 4 'l_eye', 5 'r_eye',
        # 6 'eye_g', 7 'l_ear', 8 'r_ear', 9 'ear_r',  10 'nose', 11 'mouth', 12 'u_lip',
        # 13 'l_lip', 14 'neck', 15 'neck_l', 16 'cloth', 17 'hair', 18 'hat']
        ori_h, ori_w = img.shape[2], img.shape[3]
        with torch.no_grad():
            img = F.interpolate(img, size=512, mode="nearest", )
            if not normalized:
                img = img * 0.5 + 0.5
                img = img.sub(vgg_mean.detach()).div(vgg_std.detach())
            out = global_bisenet(img)[0]
            parsing = out.softmax(1).argmax(1)
        mask = torch.zeros_like(parsing)
        for p in par:
            mask = mask + ((parsing == p).float())
        mask = mask.unsqueeze(1)
        mask = F.interpolate(mask, size=(ori_h, ori_w), mode="bilinear", align_corners=True)
        return mask

    @staticmethod
    def finetune_mask(facial_mask: np.ndarray, lmk_98: np.ndarray = None):
        assert facial_mask.shape[1] == 256
        facial_mask = (facial_mask * 255).astype(np.uint8)
        # h_min = lmk_98[33:41, 0].min() + 20
        h_min = 80

        facial_mask = cv2.dilate(facial_mask, (40, 40), iterations=1)
        facial_mask[:h_min] = 0  # black
        facial_mask[255 - 20:] = 0

        kernel_size = (20, 20)
        blur_size = tuple(2 * j + 1 for j in kernel_size)
        facial_mask = cv2.GaussianBlur(facial_mask, blur_size, 0)

        return facial_mask.astype(np.float32) / 255

    @staticmethod
    def smooth_mask(mask_tensor: torch.Tensor):
        mask_tensor, _ = global_smooth_mask(mask_tensor)
        return mask_tensor

    @staticmethod
    def tensor_to_arr(tensor):
        return ((tensor + 1.) * 127.5).permute(0, 2, 3, 1).cpu().numpy().astype(np.uint8)

    @staticmethod
    def arr_to_tensor(arr, norm: bool = True):
        tensor = torch.tensor(arr, dtype=torch.float).to(global_device) / 255  # in [0,1]
        tensor = (tensor - 0.5) / 0.5 if norm else tensor  # in [-1,1]
        tensor = tensor.permute(0, 3, 1, 2)
        return tensor

    def gpen(self, img_np: np.ndarray, use_gpen=True):
        if not use_gpen:
            return img_np
        if self.gpen_model is None:
            self.gpen_model = GPENImageInfer(device=global_device)
        img_np = self.gpen_model.image_infer(img_np)
        return img_np

    def finetune_mouth(self, i_s, i_t, i_r):
        if self.mouth_helper is None:
            self.load_mouth_helper()
        helper_face = self.mouth_helper(i_s, i_t)[0]
        i_r_mouth_mask = self.get_any_mask(i_r, par=[11, 12, 13])  # (B,1,H,W)

        ''' dilate and blur by cv2 '''
        i_r_mouth_mask = self.tensor_to_arr(i_r_mouth_mask)[0]  # (H,W,C)
        i_r_mouth_mask = cv2.dilate(i_r_mouth_mask, (20, 20), iterations=1)

        kernel_size = (5, 5)
        blur_size = tuple(2 * j + 1 for j in kernel_size)
        i_r_mouth_mask = cv2.GaussianBlur(i_r_mouth_mask, blur_size, 0)  # (H,W,C)
        i_r_mouth_mask = i_r_mouth_mask.squeeze()[None, :, :, None]  # (1,H,W,1)
        i_r_mouth_mask = self.arr_to_tensor(i_r_mouth_mask, norm=False)  # in [0,1]

        return helper_face * i_r_mouth_mask + i_r * (1 - i_r_mouth_mask)

    def load_mouth_helper(self):
        from modules.networks.faceshifter import FSGenerator
        # mouth_helper_pl = EvaluatorFaceShifter(
        #     load_path="/apdcephfs/share_1290939/gavinyuan/out/triplet10w_34/epoch=13-step=737999.ckpt",
        #     pt_path=make_abs_path("../ffplus/extracted_ckpt/G_t34_helper_post.pth"),
        #     benchmark=None,
        #     demo_folder=None,
        # )
        pt_path = make_abs_path("../weights/extracted/G_t34_helper_post.pth")
        self.mouth_helper = FSGenerator(
            make_abs_path("../weights/arcface/ms1mv3_arcface_r100_fp16/backbone.pth"),
            mouth_net_param={"use": False},
            in_size=256,
            downup=False,
        )
        self.mouth_helper.load_state_dict(torch.load(pt_path, "cpu"), strict=True)
        self.mouth_helper.eval()
        print("[Mouth helper] loaded.")


""" From MegaFS: https://github.com/zyainfal/One-Shot-Face-Swapping-on-Megapixels/tree/main/inference """
class SoftErosion(nn.Module):
    def __init__(self, kernel_size=15, threshold=0.6, iterations=1):
        super(SoftErosion, self).__init__()
        r = kernel_size // 2
        self.padding = r
        self.iterations = iterations
        self.threshold = threshold

        # Create kernel
        y_indices, x_indices = torch.meshgrid(torch.arange(0., kernel_size), torch.arange(0., kernel_size))
        dist = torch.sqrt((x_indices - r) ** 2 + (y_indices - r) ** 2)
        kernel = dist.max() - dist
        kernel /= kernel.sum()
        kernel = kernel.view(1, 1, *kernel.shape)
        self.register_buffer('weight', kernel)

    def forward(self, x):
        x = x.float()
        for i in range(self.iterations - 1):
            x = torch.min(x, F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding))
        x = F.conv2d(x, weight=self.weight, groups=x.shape[1], padding=self.padding)

        mask = x >= self.threshold
        x[mask] = 1.0
        x[~mask] /= x[~mask].max()

        return x, mask


if torch.cuda.is_available():
    global_device = torch.device(0)
else:
    global_device = torch.device('cpu')
vgg_mean = torch.tensor([[[0.485]], [[0.456]], [[0.406]]],
                             requires_grad=False, device=global_device)
vgg_std = torch.tensor([[[0.229]], [[0.224]], [[0.225]]],
                            requires_grad=False, device=global_device)
def load_bisenet():
    bisenet_model = BiSeNet(n_classes=19)
    bisenet_model.load_state_dict(
        torch.load(make_abs_path("../weights/bisenet/79999_iter.pth",), map_location="cpu")
    )
    bisenet_model.eval()
    bisenet_model = bisenet_model.to(global_device)

    smooth_mask = SoftErosion(kernel_size=17, threshold=0.9, iterations=7).to(global_device)
    print('[Global] bisenet loaded.')
    return bisenet_model, smooth_mask

global_bisenet, global_smooth_mask = load_bisenet()