File size: 7,791 Bytes
fff6648
 
 
 
 
 
 
 
 
 
 
 
4ce7dc8
fff6648
 
5c78a42
fff6648
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
import os
import torch
import argparse
import gradio as gr
import openai
from zipfile import ZipFile
import requests
import se_extractor
from api import BaseSpeakerTTS, ToneColorConverter
import langid
import traceback
from dotenv import load_dotenv

# Load environment variables
load_dotenv()

# Function to download and extract checkpoints
def download_and_extract_checkpoints():
    zip_url = "https://huggingface.co/camenduru/OpenVoice/resolve/main/checkpoints_1226.zip"
    zip_path = "checkpoints.zip"

    if not os.path.exists("checkpoints"):
        print("Downloading checkpoints...")
        response = requests.get(zip_url, stream=True)
        with open(zip_path, "wb") as zip_file:
            for chunk in response.iter_content(chunk_size=8192):
                if chunk:
                    zip_file.write(chunk)
        print("Extracting checkpoints...")
        with ZipFile(zip_path, "r") as zip_ref:
            zip_ref.extractall(".")
        os.remove(zip_path)
        print("Checkpoints are ready.")

# Call the function to ensure checkpoints are available
download_and_extract_checkpoints()

# Initialize OpenAI API key
openai.api_key = os.getenv("OPENAI_API_KEY")
if not openai.api_key:
    raise ValueError("Please set the OPENAI_API_KEY environment variable.")

parser = argparse.ArgumentParser()
parser.add_argument("--share", action='store_true', default=False, help="make link public")
args = parser.parse_args()

# Define paths to checkpoints
en_ckpt_base = 'checkpoints/base_speakers/EN'
zh_ckpt_base = 'checkpoints/base_speakers/ZH'
ckpt_converter = 'checkpoints/converter'
device = 'cuda' if torch.cuda.is_available() else 'cpu'
output_dir = 'outputs'
os.makedirs(output_dir, exist_ok=True)

# Load TTS models
en_base_speaker_tts = BaseSpeakerTTS(f'{en_ckpt_base}/config.json', device=device)
en_base_speaker_tts.load_ckpt(f'{en_ckpt_base}/checkpoint.pth')
zh_base_speaker_tts = BaseSpeakerTTS(f'{zh_ckpt_base}/config.json', device=device)
zh_base_speaker_tts.load_ckpt(f'{zh_ckpt_base}/checkpoint.pth')

tone_color_converter = ToneColorConverter(f'{ckpt_converter}/config.json', device=device)
tone_color_converter.load_ckpt(f'{ckpt_converter}/checkpoint.pth')

# Load speaker embeddings
en_source_default_se = torch.load(f'{en_ckpt_base}/en_default_se.pth').to(device)
en_source_style_se = torch.load(f'{en_ckpt_base}/en_style_se.pth').to(device)
zh_source_se = torch.load(f'{zh_ckpt_base}/zh_default_se.pth').to(device)

# Extract speaker embedding from the default Mickey Mouse audio
default_speaker_audio = "resources/output.wav"
try:
    target_se, _ = se_extractor.get_se(
        default_speaker_audio,
        tone_color_converter,
        target_dir='processed',
        vad=True
    )
    print("Speaker embedding extracted successfully.")
except Exception as e:
    raise RuntimeError(f"Failed to extract speaker embedding from {default_speaker_audio}: {str(e)}")

# Supported languages
supported_languages = ['zh', 'en']

def predict(audio_file_pth, agree):
    text_hint = ''
    synthesized_audio_path = None

    # Agree with the terms
    if not agree:
        text_hint += '[ERROR] Please accept the Terms & Conditions!\n'
        return (text_hint, None)

    # Check if audio file is provided
    if audio_file_pth is not None:
        speaker_wav = audio_file_pth
    else:
        text_hint += "[ERROR] Please record your voice using the Microphone.\n"
        return (text_hint, None)

    # Transcribe audio to text using OpenAI Whisper
    try:
        with open(speaker_wav, 'rb') as audio_file:
            transcription_response = openai.Audio.transcribe(
                model="whisper-1",
                file=audio_file,
                response_format='text'
            )
        input_text = transcription_response.strip()
        print(f"Transcribed Text: {input_text}")
    except Exception as e:
        text_hint += f"[ERROR] Transcription failed: {str(e)}\n"
        return (text_hint, None)

    if len(input_text) == 0:
        text_hint += "[ERROR] No speech detected in the audio.\n"
        return (text_hint, None)

    # Detect language
    language_predicted = langid.classify(input_text)[0].strip()
    print(f"Detected language: {language_predicted}")

    if language_predicted not in supported_languages:
        text_hint += f"[ERROR] The detected language '{language_predicted}' is not supported. Supported languages are: {supported_languages}\n"
        return (text_hint, None)

    # Select TTS model based on language
    if language_predicted == "zh":
        tts_model = zh_base_speaker_tts
        language = 'Chinese'
        speaker_style = 'default'
    else:
        tts_model = en_base_speaker_tts
        language = 'English'
        speaker_style = 'default'

    # Generate response using OpenAI GPT-4
    try:
        response = openai.ChatCompletion.create(
            model="gpt-4o-mini",
            messages=[
                {"role": "system", "content": "You are Mickey Mouse, a friendly and cheerful character who responds to children's queries in a simple and engaging manner. Please keep your response up to 200 characters."},
                {"role": "user", "content": input_text}
            ],
            max_tokens=200,
            temperature=0.7,
        )
        reply_text = response['choices'][0]['message']['content'].strip()
        print(f"GPT-4 Reply: {reply_text}")
    except Exception as e:
        text_hint += f"[ERROR] Failed to get response from OpenAI GPT-4: {str(e)}\n"
        return (text_hint, None)

    # Synthesize reply text to audio
    try:
        src_path = os.path.join(output_dir, 'tmp_reply.wav')

        tts_model.tts(reply_text, src_path, speaker=speaker_style, language=language)
        print(f"Audio synthesized and saved to {src_path}")

        save_path = os.path.join(output_dir, 'output_reply.wav')

        tone_color_converter.convert(
            audio_src_path=src_path, 
            src_se=en_source_default_se if language == 'English' else zh_source_se,
            tgt_se=target_se,
            output_path=save_path,
            message="@MickeyMouse"
        )
        print(f"Tone color conversion completed and saved to {save_path}")

        text_hint += "Response generated successfully.\n"
        synthesized_audio_path = save_path

    except Exception as e:
        text_hint += f"[ERROR] Failed to synthesize audio: {str(e)}\n"
        traceback.print_exc()
        return (text_hint, None)

    return (text_hint, synthesized_audio_path)

with gr.Blocks(analytics_enabled=False) as demo:
    gr.Markdown("# Mickey Mouse Voice Assistant")

    with gr.Row():
        with gr.Column():
            audio_input = gr.Audio(
                source="microphone",
                type="filepath",
                label="Record Your Voice",
                info="Click the microphone button to record your voice."
            )
            tos_checkbox = gr.Checkbox(
                label="Agree to Terms & Conditions",
                value=False,
                info="I agree to the terms of service."
            )
            submit_button = gr.Button("Send")

        with gr.Column():
            info_output = gr.Textbox(
                label="Info",
                interactive=False,
                lines=4,
            )
            audio_output = gr.Audio(
                label="Mickey's Response",
                interactive=False,
                autoplay=True,
            )

    submit_button.click(
        predict, 
        inputs=[audio_input, tos_checkbox], 
        outputs=[info_output, audio_output]
    )

# Launch the Gradio app
demo.queue()
demo.launch(
    server_name="0.0.0.0",
    server_port=int(os.environ.get("PORT", 7860)),
    debug=True,
    show_api=True,
    share=False
)