File size: 9,927 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
# -*- coding: utf-8 -*-

import numpy as np
import torch
import torch.nn as nn
import math

VALID_EMBED_TYPES = ["identity", "fourier", "hashgrid", "sphere_harmonic", "triplane_fourier"]


def components_from_spherical_harmonics(
    directions, levels=5
):
    """
    Returns value for each component of spherical harmonics.

    Args:
        levels: Number of spherical harmonic levels to compute.
        directions: Spherical harmonic coefficients
    """
    num_components = levels**2
    components = torch.zeros((*directions.shape[:-1], num_components), device=directions.device)

    assert 1 <= levels <= 5, f"SH levels must be in [1,4], got {levels}"
    assert directions.shape[-1] == 3, f"Direction input should have three dimensions. Got {directions.shape[-1]}"

    x = directions[..., 0]
    y = directions[..., 1]
    z = directions[..., 2]

    xx = x**2
    yy = y**2
    zz = z**2

    # l0
    components[..., 0] = 0.28209479177387814

    # l1
    if levels > 1:
        components[..., 1] = 0.4886025119029199 * y
        components[..., 2] = 0.4886025119029199 * z
        components[..., 3] = 0.4886025119029199 * x

    # l2
    if levels > 2:
        components[..., 4] = 1.0925484305920792 * x * y
        components[..., 5] = 1.0925484305920792 * y * z
        components[..., 6] = 0.9461746957575601 * zz - 0.31539156525251999
        components[..., 7] = 1.0925484305920792 * x * z
        components[..., 8] = 0.5462742152960396 * (xx - yy)

    # l3
    if levels > 3:
        components[..., 9] = 0.5900435899266435 * y * (3 * xx - yy)
        components[..., 10] = 2.890611442640554 * x * y * z
        components[..., 11] = 0.4570457994644658 * y * (5 * zz - 1)
        components[..., 12] = 0.3731763325901154 * z * (5 * zz - 3)
        components[..., 13] = 0.4570457994644658 * x * (5 * zz - 1)
        components[..., 14] = 1.445305721320277 * z * (xx - yy)
        components[..., 15] = 0.5900435899266435 * x * (xx - 3 * yy)

    # l4
    if levels > 4:
        components[..., 16] = 2.5033429417967046 * x * y * (xx - yy)
        components[..., 17] = 1.7701307697799304 * y * z * (3 * xx - yy)
        components[..., 18] = 0.9461746957575601 * x * y * (7 * zz - 1)
        components[..., 19] = 0.6690465435572892 * y * z * (7 * zz - 3)
        components[..., 20] = 0.10578554691520431 * (35 * zz * zz - 30 * zz + 3)
        components[..., 21] = 0.6690465435572892 * x * z * (7 * zz - 3)
        components[..., 22] = 0.47308734787878004 * (xx - yy) * (7 * zz - 1)
        components[..., 23] = 1.7701307697799304 * x * z * (xx - 3 * yy)
        components[..., 24] = 0.6258357354491761 * (xx * (xx - 3 * yy) - yy * (3 * xx - yy))

    return components


class FourierEmbedder(nn.Module):
    """The sin/cosine positional embedding. Given an input tensor `x` of shape [n_batch, ..., c_dim], it converts
    each feature dimension of `x[..., i]` into:
        [
            sin(x[..., i]),
            sin(f_1*x[..., i]),
            sin(f_2*x[..., i]),
            ...
            sin(f_N * x[..., i]),
            cos(x[..., i]),
            cos(f_1*x[..., i]),
            cos(f_2*x[..., i]),
            ...
            cos(f_N * x[..., i]),
            x[..., i]     # only present if include_input is True.
        ], here f_i is the frequency.

    Denote the space is [0 / num_freqs, 1 / num_freqs, 2 / num_freqs, 3 / num_freqs, ..., (num_freqs - 1) / num_freqs].
    If logspace is True, then the frequency f_i is [2^(0 / num_freqs), ..., 2^(i / num_freqs), ...];
    Otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)].

    Args:
        num_freqs (int): the number of frequencies, default is 6;
        logspace (bool): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
            otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1)];
        input_dim (int): the input dimension, default is 3;
        include_input (bool): include the input tensor or not, default is True.

    Attributes:
        frequencies (torch.Tensor): If logspace is True, then the frequency f_i is [..., 2^(i / num_freqs), ...],
                otherwise, the frequencies are linearly spaced between [1.0, 2^(num_freqs - 1);

        out_dim (int): the embedding size, if include_input is True, it is input_dim * (num_freqs * 2 + 1),
            otherwise, it is input_dim * num_freqs * 2.

    """

    def __init__(self,
                 num_freqs: int = 6,
                 logspace: bool = True,
                 input_dim: int = 3,
                 include_input: bool = True,
                 include_pi: bool = True) -> None:

        """The initialization"""

        super().__init__()

        if logspace:
            frequencies = 2.0 ** torch.arange(
                num_freqs,
                dtype=torch.float32
            )
        else:
            frequencies = torch.linspace(
                1.0,
                2.0 ** (num_freqs - 1),
                num_freqs,
                dtype=torch.float32
            )

        if include_pi:
            frequencies *= torch.pi

        self.register_buffer("frequencies", frequencies, persistent=False)
        self.include_input = include_input
        self.num_freqs = num_freqs

        self.out_dim = self.get_dims(input_dim)

    def get_dims(self, input_dim):
        temp = 1 if self.include_input or self.num_freqs == 0 else 0
        out_dim = input_dim * (self.num_freqs * 2 + temp)

        return out_dim

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """ Forward process.

        Args:
            x: tensor of shape [..., dim]

        Returns:
            embedding: an embedding of `x` of shape [..., dim * (num_freqs * 2 + temp)]
                where temp is 1 if include_input is True and 0 otherwise.
        """

        if self.num_freqs > 0:
            embed = (x[..., None].contiguous() * self.frequencies).view(*x.shape[:-1], -1)
            if self.include_input:
                return torch.cat((x, embed.sin(), embed.cos()), dim=-1)
            else:
                return torch.cat((embed.sin(), embed.cos()), dim=-1)
        else:
            return x


class LearnedFourierEmbedder(nn.Module):
    """ following @crowsonkb "s lead with learned sinusoidal pos emb """
    """ https://github.com/crowsonkb/v-diffusion-jax/blob/master/diffusion/models/danbooru_128.py#L8 """

    def __init__(self, in_channels, dim):
        super().__init__()
        assert (dim % 2) == 0
        half_dim = dim // 2
        per_channel_dim = half_dim // in_channels
        self.weights = nn.Parameter(torch.randn(per_channel_dim))

    def forward(self, x):
        """

        Args:
            x (torch.FloatTensor): [..., c]

        Returns:
            x (torch.FloatTensor): [..., d]
        """

        # [b, t, c, 1] * [1, d] = [b, t, c, d] -> [b, t, c * d]
        freqs = (x[..., None] * self.weights[None] * 2 * np.pi).view(*x.shape[:-1], -1)
        fouriered = torch.cat((x, freqs.sin(), freqs.cos()), dim=-1)
        return fouriered


class TriplaneLearnedFourierEmbedder(nn.Module):
    def __init__(self, in_channels, dim):
        super().__init__()

        self.yz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
        self.xz_plane_embedder = LearnedFourierEmbedder(in_channels, dim)
        self.xy_plane_embedder = LearnedFourierEmbedder(in_channels, dim)

        self.out_dim = in_channels + dim

    def forward(self, x):

        yz_embed = self.yz_plane_embedder(x)
        xz_embed = self.xz_plane_embedder(x)
        xy_embed = self.xy_plane_embedder(x)

        embed = yz_embed + xz_embed + xy_embed

        return embed


def sequential_pos_embed(num_len, embed_dim):
    assert embed_dim % 2 == 0

    pos = torch.arange(num_len, dtype=torch.float32)
    omega = torch.arange(embed_dim // 2, dtype=torch.float32)
    omega /= embed_dim / 2.
    omega = 1. / 10000 ** omega  # (D/2,)

    pos = pos.reshape(-1)  # (M,)
    out = torch.einsum("m,d->md", pos, omega)  # (M, D/2), outer product

    emb_sin = torch.sin(out)  # (M, D/2)
    emb_cos = torch.cos(out)  # (M, D/2)

    embeddings = torch.cat([emb_sin, emb_cos], dim=1)  # (M, D)

    return embeddings


def timestep_embedding(timesteps, dim, max_period=10000):
    """
    Create sinusoidal timestep embeddings.
    :param timesteps: a 1-D Tensor of N indices, one per batch element.
                      These may be fractional.
    :param dim: the dimension of the output.
    :param max_period: controls the minimum frequency of the embeddings.
    :return: an [N x dim] Tensor of positional embeddings.
    """
    half = dim // 2
    freqs = torch.exp(
        -math.log(max_period) * torch.arange(start=0, end=half, dtype=torch.float32) / half
    ).to(device=timesteps.device)
    args = timesteps[:, None].to(timesteps.dtype) * freqs[None]
    embedding = torch.cat([torch.cos(args), torch.sin(args)], dim=-1)
    if dim % 2:
        embedding = torch.cat([embedding, torch.zeros_like(embedding[:, :1])], dim=-1)
    return embedding


def get_embedder(embed_type="fourier", num_freqs=-1, input_dim=3, degree=4,
                 num_levels=16, level_dim=2, per_level_scale=2, base_resolution=16,
                 log2_hashmap_size=19, desired_resolution=None):
    if embed_type == "identity" or (embed_type == "fourier" and num_freqs == -1):
        return nn.Identity(), input_dim

    elif embed_type == "fourier":
        embedder_obj = FourierEmbedder(num_freqs=num_freqs, input_dim=input_dim,
                                       logspace=True, include_input=True)
        return embedder_obj, embedder_obj.out_dim

    elif embed_type == "hashgrid":
        raise NotImplementedError

    elif embed_type == "sphere_harmonic":
        raise NotImplementedError

    else:
        raise ValueError(f"{embed_type} is not valid. Currently only supprts {VALID_EMBED_TYPES}")