File size: 18,689 Bytes
744eb4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 |
# SPDX-FileCopyrightText: Copyright (c) 2021-2022 NVIDIA CORPORATION & AFFILIATES. All rights reserved.
# SPDX-License-Identifier: LicenseRef-NvidiaProprietary
#
# NVIDIA CORPORATION, its affiliates and licensors retain all intellectual
# property and proprietary rights in and to this material, related
# documentation and any modifications thereto. Any use, reproduction,
# disclosure or distribution of this material and related documentation
# without an express license agreement from NVIDIA CORPORATION or
# its affiliates is strictly prohibited.
"""Loss functions."""
import numpy as np
import torch
from torch_utils import training_stats
from torch_utils.ops import conv2d_gradfix
from torch_utils.ops import upfirdn2d
from training.dual_discriminator import filtered_resizing
#----------------------------------------------------------------------------
class Loss:
def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, gain, cur_nimg): # to be overridden by subclass
raise NotImplementedError()
#----------------------------------------------------------------------------
class StyleGAN2Loss(Loss):
def __init__(self, device, G, D, augment_pipe=None, r1_gamma=10, style_mixing_prob=0, pl_weight=0, pl_batch_shrink=2, pl_decay=0.01, pl_no_weight_grad=False, blur_init_sigma=0, blur_fade_kimg=0, r1_gamma_init=0, r1_gamma_fade_kimg=0, neural_rendering_resolution_initial=64, neural_rendering_resolution_final=None, neural_rendering_resolution_fade_kimg=0, gpc_reg_fade_kimg=1000, gpc_reg_prob=None, dual_discrimination=False, filter_mode='antialiased'):
super().__init__()
self.device = device
self.G = G
self.D = D
self.augment_pipe = augment_pipe
self.r1_gamma = r1_gamma
self.style_mixing_prob = style_mixing_prob
self.pl_weight = pl_weight
self.pl_batch_shrink = pl_batch_shrink
self.pl_decay = pl_decay
self.pl_no_weight_grad = pl_no_weight_grad
self.pl_mean = torch.zeros([], device=device)
self.blur_init_sigma = blur_init_sigma
self.blur_fade_kimg = blur_fade_kimg
self.r1_gamma_init = r1_gamma_init
self.r1_gamma_fade_kimg = r1_gamma_fade_kimg
self.neural_rendering_resolution_initial = neural_rendering_resolution_initial
self.neural_rendering_resolution_final = neural_rendering_resolution_final
self.neural_rendering_resolution_fade_kimg = neural_rendering_resolution_fade_kimg
self.gpc_reg_fade_kimg = gpc_reg_fade_kimg
self.gpc_reg_prob = gpc_reg_prob
self.dual_discrimination = dual_discrimination
self.filter_mode = filter_mode
self.resample_filter = upfirdn2d.setup_filter([1,3,3,1], device=device)
self.blur_raw_target = True
assert self.gpc_reg_prob is None or (0 <= self.gpc_reg_prob <= 1)
def run_G(self, z, c, swapping_prob, neural_rendering_resolution, update_emas=False):
if swapping_prob is not None:
c_swapped = torch.roll(c.clone(), 1, 0)
c_gen_conditioning = torch.where(torch.rand((c.shape[0], 1), device=c.device) < swapping_prob, c_swapped, c)
else:
c_gen_conditioning = torch.zeros_like(c)
ws = self.G.mapping(z, c_gen_conditioning, update_emas=update_emas)
if self.style_mixing_prob > 0:
with torch.autograd.profiler.record_function('style_mixing'):
cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
gen_output = self.G.synthesis(ws, c, neural_rendering_resolution=neural_rendering_resolution, update_emas=update_emas)
return gen_output, ws
def run_D(self, img, c, blur_sigma=0, blur_sigma_raw=0, update_emas=False):
blur_size = np.floor(blur_sigma * 3)
if blur_size > 0:
with torch.autograd.profiler.record_function('blur'):
f = torch.arange(-blur_size, blur_size + 1, device=img['image'].device).div(blur_sigma).square().neg().exp2()
img['image'] = upfirdn2d.filter2d(img['image'], f / f.sum())
if self.augment_pipe is not None:
augmented_pair = self.augment_pipe(torch.cat([img['image'],
torch.nn.functional.interpolate(img['image_raw'], size=img['image'].shape[2:], mode='bilinear', antialias=True)],
dim=1))
img['image'] = augmented_pair[:, :img['image'].shape[1]]
img['image_raw'] = torch.nn.functional.interpolate(augmented_pair[:, img['image'].shape[1]:], size=img['image_raw'].shape[2:], mode='bilinear', antialias=True)
logits = self.D(img, c, update_emas=update_emas)
return logits
def accumulate_gradients(self, phase, real_img, real_c, gen_z, gen_c, gain, cur_nimg):
assert phase in ['Gmain', 'Greg', 'Gboth', 'Dmain', 'Dreg', 'Dboth']
if self.G.rendering_kwargs.get('density_reg', 0) == 0:
phase = {'Greg': 'none', 'Gboth': 'Gmain'}.get(phase, phase)
if self.r1_gamma == 0:
phase = {'Dreg': 'none', 'Dboth': 'Dmain'}.get(phase, phase)
blur_sigma = max(1 - cur_nimg / (self.blur_fade_kimg * 1e3), 0) * self.blur_init_sigma if self.blur_fade_kimg > 0 else 0
r1_gamma = self.r1_gamma
alpha = min(cur_nimg / (self.gpc_reg_fade_kimg * 1e3), 1) if self.gpc_reg_fade_kimg > 0 else 1
swapping_prob = (1 - alpha) * 1 + alpha * self.gpc_reg_prob if self.gpc_reg_prob is not None else None
if self.neural_rendering_resolution_final is not None:
alpha = min(cur_nimg / (self.neural_rendering_resolution_fade_kimg * 1e3), 1)
neural_rendering_resolution = int(np.rint(self.neural_rendering_resolution_initial * (1 - alpha) + self.neural_rendering_resolution_final * alpha))
else:
neural_rendering_resolution = self.neural_rendering_resolution_initial
real_img_raw = filtered_resizing(real_img, size=neural_rendering_resolution, f=self.resample_filter, filter_mode=self.filter_mode)
if self.blur_raw_target:
blur_size = np.floor(blur_sigma * 3)
if blur_size > 0:
f = torch.arange(-blur_size, blur_size + 1, device=real_img_raw.device).div(blur_sigma).square().neg().exp2()
real_img_raw = upfirdn2d.filter2d(real_img_raw, f / f.sum())
real_img = {'image': real_img, 'image_raw': real_img_raw}
# Gmain: Maximize logits for generated images.
if phase in ['Gmain', 'Gboth']:
with torch.autograd.profiler.record_function('Gmain_forward'):
gen_img, _gen_ws = self.run_G(gen_z, gen_c, swapping_prob=swapping_prob, neural_rendering_resolution=neural_rendering_resolution)
gen_logits = self.run_D(gen_img, gen_c, blur_sigma=blur_sigma)
training_stats.report('Loss/scores/fake', gen_logits)
training_stats.report('Loss/signs/fake', gen_logits.sign())
loss_Gmain = torch.nn.functional.softplus(-gen_logits)
training_stats.report('Loss/G/loss', loss_Gmain)
with torch.autograd.profiler.record_function('Gmain_backward'):
loss_Gmain.mean().mul(gain).backward()
# Density Regularization
if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'l1':
if swapping_prob is not None:
c_swapped = torch.roll(gen_c.clone(), 1, 0)
c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
else:
c_gen_conditioning = torch.zeros_like(gen_c)
ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
if self.style_mixing_prob > 0:
with torch.autograd.profiler.record_function('style_mixing'):
cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * self.G.rendering_kwargs['density_reg_p_dist']
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
sigma_initial = sigma[:, :sigma.shape[1]//2]
sigma_perturbed = sigma[:, sigma.shape[1]//2:]
TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg']
TVloss.mul(gain).backward()
# Alternative density regularization
if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'monotonic-detach':
if swapping_prob is not None:
c_swapped = torch.roll(gen_c.clone(), 1, 0)
c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
else:
c_gen_conditioning = torch.zeros_like(gen_c)
ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
initial_coordinates = torch.rand((ws.shape[0], 2000, 3), device=ws.device) * 2 - 1 # Front
perturbed_coordinates = initial_coordinates + torch.tensor([0, 0, -1], device=ws.device) * (1/256) * self.G.rendering_kwargs['box_warp'] # Behind
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
sigma_initial = sigma[:, :sigma.shape[1]//2]
sigma_perturbed = sigma[:, sigma.shape[1]//2:]
monotonic_loss = torch.relu(sigma_initial.detach() - sigma_perturbed).mean() * 10
monotonic_loss.mul(gain).backward()
if swapping_prob is not None:
c_swapped = torch.roll(gen_c.clone(), 1, 0)
c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
else:
c_gen_conditioning = torch.zeros_like(gen_c)
ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
if self.style_mixing_prob > 0:
with torch.autograd.profiler.record_function('style_mixing'):
cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * (1/256) * self.G.rendering_kwargs['box_warp']
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
sigma_initial = sigma[:, :sigma.shape[1]//2]
sigma_perturbed = sigma[:, sigma.shape[1]//2:]
TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg']
TVloss.mul(gain).backward()
# Alternative density regularization
if phase in ['Greg', 'Gboth'] and self.G.rendering_kwargs.get('density_reg', 0) > 0 and self.G.rendering_kwargs['reg_type'] == 'monotonic-fixed':
if swapping_prob is not None:
c_swapped = torch.roll(gen_c.clone(), 1, 0)
c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
else:
c_gen_conditioning = torch.zeros_like(gen_c)
ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
initial_coordinates = torch.rand((ws.shape[0], 2000, 3), device=ws.device) * 2 - 1 # Front
perturbed_coordinates = initial_coordinates + torch.tensor([0, 0, -1], device=ws.device) * (1/256) * self.G.rendering_kwargs['box_warp'] # Behind
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
sigma_initial = sigma[:, :sigma.shape[1]//2]
sigma_perturbed = sigma[:, sigma.shape[1]//2:]
monotonic_loss = torch.relu(sigma_initial - sigma_perturbed).mean() * 10
monotonic_loss.mul(gain).backward()
if swapping_prob is not None:
c_swapped = torch.roll(gen_c.clone(), 1, 0)
c_gen_conditioning = torch.where(torch.rand([], device=gen_c.device) < swapping_prob, c_swapped, gen_c)
else:
c_gen_conditioning = torch.zeros_like(gen_c)
ws = self.G.mapping(gen_z, c_gen_conditioning, update_emas=False)
if self.style_mixing_prob > 0:
with torch.autograd.profiler.record_function('style_mixing'):
cutoff = torch.empty([], dtype=torch.int64, device=ws.device).random_(1, ws.shape[1])
cutoff = torch.where(torch.rand([], device=ws.device) < self.style_mixing_prob, cutoff, torch.full_like(cutoff, ws.shape[1]))
ws[:, cutoff:] = self.G.mapping(torch.randn_like(z), c, update_emas=False)[:, cutoff:]
initial_coordinates = torch.rand((ws.shape[0], 1000, 3), device=ws.device) * 2 - 1
perturbed_coordinates = initial_coordinates + torch.randn_like(initial_coordinates) * (1/256) * self.G.rendering_kwargs['box_warp']
all_coordinates = torch.cat([initial_coordinates, perturbed_coordinates], dim=1)
sigma = self.G.sample_mixed(all_coordinates, torch.randn_like(all_coordinates), ws, update_emas=False)['sigma']
sigma_initial = sigma[:, :sigma.shape[1]//2]
sigma_perturbed = sigma[:, sigma.shape[1]//2:]
TVloss = torch.nn.functional.l1_loss(sigma_initial, sigma_perturbed) * self.G.rendering_kwargs['density_reg']
TVloss.mul(gain).backward()
# Dmain: Minimize logits for generated images.
loss_Dgen = 0
if phase in ['Dmain', 'Dboth']:
with torch.autograd.profiler.record_function('Dgen_forward'):
gen_img, _gen_ws = self.run_G(gen_z, gen_c, swapping_prob=swapping_prob, neural_rendering_resolution=neural_rendering_resolution, update_emas=True)
gen_logits = self.run_D(gen_img, gen_c, blur_sigma=blur_sigma, update_emas=True)
training_stats.report('Loss/scores/fake', gen_logits)
training_stats.report('Loss/signs/fake', gen_logits.sign())
loss_Dgen = torch.nn.functional.softplus(gen_logits)
with torch.autograd.profiler.record_function('Dgen_backward'):
loss_Dgen.mean().mul(gain).backward()
# Dmain: Maximize logits for real images.
# Dr1: Apply R1 regularization.
if phase in ['Dmain', 'Dreg', 'Dboth']:
name = 'Dreal' if phase == 'Dmain' else 'Dr1' if phase == 'Dreg' else 'Dreal_Dr1'
with torch.autograd.profiler.record_function(name + '_forward'):
real_img_tmp_image = real_img['image'].detach().requires_grad_(phase in ['Dreg', 'Dboth'])
real_img_tmp_image_raw = real_img['image_raw'].detach().requires_grad_(phase in ['Dreg', 'Dboth'])
real_img_tmp = {'image': real_img_tmp_image, 'image_raw': real_img_tmp_image_raw}
real_logits = self.run_D(real_img_tmp, real_c, blur_sigma=blur_sigma)
training_stats.report('Loss/scores/real', real_logits)
training_stats.report('Loss/signs/real', real_logits.sign())
loss_Dreal = 0
if phase in ['Dmain', 'Dboth']:
loss_Dreal = torch.nn.functional.softplus(-real_logits)
training_stats.report('Loss/D/loss', loss_Dgen + loss_Dreal)
loss_Dr1 = 0
if phase in ['Dreg', 'Dboth']:
if self.dual_discrimination:
with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp['image'], real_img_tmp['image_raw']], create_graph=True, only_inputs=True)
r1_grads_image = r1_grads[0]
r1_grads_image_raw = r1_grads[1]
r1_penalty = r1_grads_image.square().sum([1,2,3]) + r1_grads_image_raw.square().sum([1,2,3])
else: # single discrimination
with torch.autograd.profiler.record_function('r1_grads'), conv2d_gradfix.no_weight_gradients():
r1_grads = torch.autograd.grad(outputs=[real_logits.sum()], inputs=[real_img_tmp['image']], create_graph=True, only_inputs=True)
r1_grads_image = r1_grads[0]
r1_penalty = r1_grads_image.square().sum([1,2,3])
loss_Dr1 = r1_penalty * (r1_gamma / 2)
training_stats.report('Loss/r1_penalty', r1_penalty)
training_stats.report('Loss/D/reg', loss_Dr1)
with torch.autograd.profiler.record_function(name + '_backward'):
(loss_Dreal + loss_Dr1).mean().mul(gain).backward()
#----------------------------------------------------------------------------
|