File size: 9,292 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
import numpy as np
import matplotlib.pyplot as plt
from mpl_toolkits.mplot3d import Axes3D
import random
import torch
import torch.nn as nn
import torch.nn.functional as F
import os
from collections import abc
# from pointnet2_ops import pointnet2_utils


# def fps(data, number):
#     '''
#         data B N 3
#         number int
#     '''
#     fps_idx = pointnet2_utils.furthest_point_sample(data, number)
#     fps_data = pointnet2_utils.gather_operation(data.transpose(1, 2).contiguous(), fps_idx).transpose(1,2).contiguous()
#     return fps_data

def index_points(points, idx):
    """
    Input:
        points: input points data, [B, N, C]
        idx: sample index data, [B, S]
    Return:
        new_points:, indexed points data, [B, S, C]
    """
    device = points.device
    B = points.shape[0]
    view_shape = list(idx.shape)
    view_shape[1:] = [1] * (len(view_shape) - 1)
    repeat_shape = list(idx.shape)
    repeat_shape[0] = 1
    batch_indices = torch.arange(B, dtype=torch.long).to(device).view(view_shape).repeat(repeat_shape)
    new_points = points[batch_indices, idx, :]
    return new_points

def fps(xyz, npoint):
    """
    Input:
        xyz: pointcloud data, [B, N, 3]
        npoint: number of samples
    Return:
        centroids: sampled pointcloud index, [B, npoint]
    """
    device = xyz.device
    B, N, C = xyz.shape
    centroids = torch.zeros(B, npoint, dtype=torch.long).to(device)
    distance = torch.ones(B, N).to(device) * 1e10
    farthest = torch.randint(0, N, (B,), dtype=torch.long).to(device)
    batch_indices = torch.arange(B, dtype=torch.long).to(device)
    for i in range(npoint):
        centroids[:, i] = farthest
        centroid = xyz[batch_indices, farthest, :].view(B, 1, 3)
        dist = torch.sum((xyz - centroid) ** 2, -1)
        distance = torch.min(distance, dist)
        farthest = torch.max(distance, -1)[1]
    return index_points(xyz, centroids)

def worker_init_fn(worker_id):
    np.random.seed(np.random.get_state()[1][0] + worker_id)

def build_lambda_sche(opti, config):
    if config.get('decay_step') is not None:
        lr_lbmd = lambda e: max(config.lr_decay ** (e / config.decay_step), config.lowest_decay)
        scheduler = torch.optim.lr_scheduler.LambdaLR(opti, lr_lbmd)
    else:
        raise NotImplementedError()
    return scheduler

def build_lambda_bnsche(model, config):
    if config.get('decay_step') is not None:
        bnm_lmbd = lambda e: max(config.bn_momentum * config.bn_decay ** (e / config.decay_step), config.lowest_decay)
        bnm_scheduler = BNMomentumScheduler(model, bnm_lmbd)
    else:
        raise NotImplementedError()
    return bnm_scheduler
    
def set_random_seed(seed, deterministic=False):
    """Set random seed.
    Args:
        seed (int): Seed to be used.
        deterministic (bool): Whether to set the deterministic option for
            CUDNN backend, i.e., set `torch.backends.cudnn.deterministic`
            to True and `torch.backends.cudnn.benchmark` to False.
            Default: False.

    # Speed-reproducibility tradeoff https://pytorch.org/docs/stable/notes/randomness.html
    if cuda_deterministic:  # slower, more reproducible
        cudnn.deterministic = True
        cudnn.benchmark = False
    else:  # faster, less reproducible
        cudnn.deterministic = False
        cudnn.benchmark = True

    """
    random.seed(seed)
    np.random.seed(seed)
    torch.manual_seed(seed)
    torch.cuda.manual_seed_all(seed)
    if deterministic:
        torch.backends.cudnn.deterministic = True
        torch.backends.cudnn.benchmark = False


def is_seq_of(seq, expected_type, seq_type=None):
    """Check whether it is a sequence of some type.
    Args:
        seq (Sequence): The sequence to be checked.
        expected_type (type): Expected type of sequence items.
        seq_type (type, optional): Expected sequence type.
    Returns:
        bool: Whether the sequence is valid.
    """
    if seq_type is None:
        exp_seq_type = abc.Sequence
    else:
        assert isinstance(seq_type, type)
        exp_seq_type = seq_type
    if not isinstance(seq, exp_seq_type):
        return False
    for item in seq:
        if not isinstance(item, expected_type):
            return False
    return True


def set_bn_momentum_default(bn_momentum):
    def fn(m):
        if isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d, nn.BatchNorm3d)):
            m.momentum = bn_momentum
    return fn

class BNMomentumScheduler(object):

    def __init__(
            self, model, bn_lambda, last_epoch=-1,
            setter=set_bn_momentum_default
    ):
        if not isinstance(model, nn.Module):
            raise RuntimeError(
                "Class '{}' is not a PyTorch nn Module".format(
                    type(model).__name__
                )
            )

        self.model = model
        self.setter = setter
        self.lmbd = bn_lambda

        self.step(last_epoch + 1)
        self.last_epoch = last_epoch

    def step(self, epoch=None):
        if epoch is None:
            epoch = self.last_epoch + 1

        self.last_epoch = epoch
        self.model.apply(self.setter(self.lmbd(epoch)))

    def get_momentum(self, epoch=None):
        if epoch is None:
            epoch = self.last_epoch + 1
        return self.lmbd(epoch)



def seprate_point_cloud(xyz, num_points, crop, fixed_points = None, padding_zeros = False):
    '''
     seprate point cloud: usage : using to generate the incomplete point cloud with a setted number.
    '''
    _,n,c = xyz.shape

    assert n == num_points
    assert c == 3
    if crop == num_points:
        return xyz, None
        
    INPUT = []
    CROP = []
    for points in xyz:
        if isinstance(crop,list):
            num_crop = random.randint(crop[0],crop[1])
        else:
            num_crop = crop

        points = points.unsqueeze(0)

        if fixed_points is None:       
            center = F.normalize(torch.randn(1,1,3),p=2,dim=-1).cuda()
        else:
            if isinstance(fixed_points,list):
                fixed_point = random.sample(fixed_points,1)[0]
            else:
                fixed_point = fixed_points
            center = fixed_point.reshape(1,1,3).cuda()

        distance_matrix = torch.norm(center.unsqueeze(2) - points.unsqueeze(1), p =2 ,dim = -1)  # 1 1 2048

        idx = torch.argsort(distance_matrix,dim=-1, descending=False)[0,0] # 2048

        if padding_zeros:
            input_data = points.clone()
            input_data[0, idx[:num_crop]] =  input_data[0,idx[:num_crop]] * 0

        else:
            input_data = points.clone()[0, idx[num_crop:]].unsqueeze(0) # 1 N 3

        crop_data =  points.clone()[0, idx[:num_crop]].unsqueeze(0)

        if isinstance(crop,list):
            INPUT.append(fps(input_data,2048))
            CROP.append(fps(crop_data,2048))
        else:
            INPUT.append(input_data)
            CROP.append(crop_data)

    input_data = torch.cat(INPUT,dim=0)# B N 3
    crop_data = torch.cat(CROP,dim=0)# B M 3

    return input_data.contiguous(), crop_data.contiguous()

def get_ptcloud_img(ptcloud):
    fig = plt.figure(figsize=(8, 8))

    x, z, y = ptcloud.transpose(1, 0)
    ax = fig.gca(projection=Axes3D.name, adjustable='box')
    ax.axis('off')
    # ax.axis('scaled')
    ax.view_init(30, 45)
    max, min = np.max(ptcloud), np.min(ptcloud)
    ax.set_xbound(min, max)
    ax.set_ybound(min, max)
    ax.set_zbound(min, max)
    ax.scatter(x, y, z, zdir='z', c=x, cmap='jet')

    fig.canvas.draw()
    img = np.fromstring(fig.canvas.tostring_rgb(), dtype=np.uint8, sep='')
    img = img.reshape(fig.canvas.get_width_height()[::-1] + (3, ))
    return img



def visualize_KITTI(path, data_list, titles = ['input','pred'], cmap=['bwr','autumn'], zdir='y', 
                         xlim=(-1, 1), ylim=(-1, 1), zlim=(-1, 1) ):
    fig = plt.figure(figsize=(6*len(data_list),6))
    cmax = data_list[-1][:,0].max()

    for i in range(len(data_list)):
        data = data_list[i][:-2048] if i == 1 else data_list[i]
        color = data[:,0] /cmax
        ax = fig.add_subplot(1, len(data_list) , i + 1, projection='3d')
        ax.view_init(30, -120)
        b = ax.scatter(data[:, 0], data[:, 1], data[:, 2], zdir=zdir, c=color,vmin=-1,vmax=1 ,cmap = cmap[0],s=4,linewidth=0.05, edgecolors = 'black')
        ax.set_title(titles[i])

        ax.set_axis_off()
        ax.set_xlim(xlim)
        ax.set_ylim(ylim)
        ax.set_zlim(zlim)
    plt.subplots_adjust(left=0, right=1, bottom=0, top=1, wspace=0.2, hspace=0)
    if not os.path.exists(path):
        os.makedirs(path)

    pic_path = path + '.png'
    fig.savefig(pic_path)

    np.save(os.path.join(path, 'input.npy'), data_list[0].numpy())
    np.save(os.path.join(path, 'pred.npy'), data_list[1].numpy())
    plt.close(fig)


def random_dropping(pc, e):
    up_num = max(64, 768 // (e//50 + 1))
    pc = pc
    random_num = torch.randint(1, up_num, (1,1))[0,0]
    pc = fps(pc, random_num)
    padding = torch.zeros(pc.size(0), 2048 - pc.size(1), 3).to(pc.device)
    pc = torch.cat([pc, padding], dim = 1)
    return pc
    

def random_scale(partial, scale_range=[0.8, 1.2]):
    scale = torch.rand(1).cuda() * (scale_range[1] - scale_range[0]) + scale_range[0]
    return partial * scale