File size: 13,750 Bytes
744eb4e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
import torch.nn as nn
import torch
import torch.nn.functional as F
from . import misc

# from knn_cuda import KNN

# knn = KNN(k=4, transpose_mode=False)


class DGCNN(nn.Module):
    def __init__(self, encoder_channel, output_channel):
        super().__init__()
        '''
        K has to be 16
        '''
        self.input_trans = nn.Conv1d(encoder_channel, 128, 1)

        self.layer1 = nn.Sequential(nn.Conv2d(256, 256, kernel_size=1, bias=False),
                                    nn.GroupNorm(4, 256),
                                    nn.LeakyReLU(negative_slope=0.2)
                                    )

        self.layer2 = nn.Sequential(nn.Conv2d(512, 512, kernel_size=1, bias=False),
                                    nn.GroupNorm(4, 512),
                                    nn.LeakyReLU(negative_slope=0.2)
                                    )

        self.layer3 = nn.Sequential(nn.Conv2d(1024, 512, kernel_size=1, bias=False),
                                    nn.GroupNorm(4, 512),
                                    nn.LeakyReLU(negative_slope=0.2)
                                    )

        self.layer4 = nn.Sequential(nn.Conv2d(1024, 1024, kernel_size=1, bias=False),
                                    nn.GroupNorm(4, 1024),
                                    nn.LeakyReLU(negative_slope=0.2)
                                    )

        self.layer5 = nn.Sequential(nn.Conv1d(2304, output_channel, kernel_size=1, bias=False),
                                    nn.GroupNorm(4, output_channel),
                                    nn.LeakyReLU(negative_slope=0.2)
                                    )

    @staticmethod
    def get_graph_feature(coor_q, x_q, coor_k, x_k):
        # coor: bs, 3, np, x: bs, c, np

        k = 4
        batch_size = x_k.size(0)
        num_points_k = x_k.size(2)
        num_points_q = x_q.size(2)

        with torch.no_grad():
            _, idx = knn(coor_k, coor_q)  # bs k np
            assert idx.shape[1] == k
            idx_base = torch.arange(0, batch_size, device=x_q.device).view(-1, 1, 1) * num_points_k
            idx = idx + idx_base
            idx = idx.view(-1)
        num_dims = x_k.size(1)
        x_k = x_k.transpose(2, 1).contiguous()
        feature = x_k.view(batch_size * num_points_k, -1)[idx, :]
        feature = feature.view(batch_size, k, num_points_q, num_dims).permute(0, 3, 2, 1).contiguous()
        x_q = x_q.view(batch_size, num_dims, num_points_q, 1).expand(-1, -1, -1, k)
        feature = torch.cat((feature - x_q, x_q), dim=1)
        return feature

    def forward(self, f, coor):
        # f: B G C
        # coor: B G 3

        # bs 3 N   bs C N
        feature_list = []
        coor = coor.transpose(1, 2).contiguous()  # B 3 N
        f = f.transpose(1, 2).contiguous()  # B C N
        f = self.input_trans(f)  # B 128 N

        f = self.get_graph_feature(coor, f, coor, f)  # B 256 N k
        f = self.layer1(f)  # B 256 N k
        f = f.max(dim=-1, keepdim=False)[0]  # B 256 N
        feature_list.append(f)

        f = self.get_graph_feature(coor, f, coor, f)  # B 512 N k
        f = self.layer2(f)  # B 512 N k
        f = f.max(dim=-1, keepdim=False)[0]  # B 512 N
        feature_list.append(f)

        f = self.get_graph_feature(coor, f, coor, f)  # B 1024 N k
        f = self.layer3(f)  # B 512 N k
        f = f.max(dim=-1, keepdim=False)[0]  # B 512 N
        feature_list.append(f)

        f = self.get_graph_feature(coor, f, coor, f)  # B 1024 N k
        f = self.layer4(f)  # B 1024 N k
        f = f.max(dim=-1, keepdim=False)[0]  # B 1024 N
        feature_list.append(f)

        f = torch.cat(feature_list, dim=1)  # B 2304 N

        f = self.layer5(f)  # B C' N

        f = f.transpose(-1, -2)

        return f


### ref https://github.com/Strawberry-Eat-Mango/PCT_Pytorch/blob/main/util.py ###
def knn_point(nsample, xyz, new_xyz):
    """
    Input:
        nsample: max sample number in local region
        xyz: all points, [B, N, C]
        new_xyz: query points, [B, S, C]
    Return:
        group_idx: grouped points index, [B, S, nsample]
    """
    sqrdists = square_distance(new_xyz, xyz)
    _, group_idx = torch.topk(sqrdists, nsample, dim=-1, largest=False, sorted=False)
    return group_idx


def square_distance(src, dst):
    """
    Calculate Euclid distance between each two points.
    src^T * dst = xn * xm + yn * ym + zn * zm;
    sum(src^2, dim=-1) = xn*xn + yn*yn + zn*zn;
    sum(dst^2, dim=-1) = xm*xm + ym*ym + zm*zm;
    dist = (xn - xm)^2 + (yn - ym)^2 + (zn - zm)^2
         = sum(src**2,dim=-1)+sum(dst**2,dim=-1)-2*src^T*dst
    Input:
        src: source points, [B, N, C]
        dst: target points, [B, M, C]
    Output:
        dist: per-point square distance, [B, N, M]
    """
    B, N, _ = src.shape
    _, M, _ = dst.shape
    dist = -2 * torch.matmul(src, dst.permute(0, 2, 1))
    dist += torch.sum(src ** 2, -1).view(B, N, 1)
    dist += torch.sum(dst ** 2, -1).view(B, 1, M)
    return dist


class Group(nn.Module):
    def __init__(self, num_group, group_size):
        super().__init__()
        self.num_group = num_group
        self.group_size = group_size
        # self.knn = KNN(k=self.group_size, transpose_mode=True)

    def forward(self, xyz):
        '''
            input: B N 3
            ---------------------------
            output: B G M 3
            center : B G 3
        '''
        B, N, C = xyz.shape
        if C > 3:
            data = xyz
            xyz = data[:,:,:3]
            rgb = data[:, :, 3:]
        batch_size, num_points, _ = xyz.shape
        # fps the centers out
        center = misc.fps(xyz, self.num_group)  # B G 3

        # knn to get the neighborhood
        # _, idx = self.knn(xyz, center) # B G M
        idx = knn_point(self.group_size, xyz, center)  # B G M
        assert idx.size(1) == self.num_group
        assert idx.size(2) == self.group_size
        idx_base = torch.arange(0, batch_size, device=xyz.device).view(-1, 1, 1) * num_points
        idx = idx + idx_base
        idx = idx.view(-1)

        neighborhood_xyz = xyz.view(batch_size * num_points, -1)[idx, :]
        neighborhood_xyz = neighborhood_xyz.view(batch_size, self.num_group, self.group_size, 3).contiguous()
        if C > 3:
            neighborhood_rgb = rgb.view(batch_size * num_points, -1)[idx, :]
            neighborhood_rgb = neighborhood_rgb.view(batch_size, self.num_group, self.group_size, -1).contiguous()

        # normalize xyz 
        neighborhood_xyz = neighborhood_xyz - center.unsqueeze(2)
        if C > 3:
            neighborhood = torch.cat((neighborhood_xyz, neighborhood_rgb), dim=-1)
        else:
            neighborhood = neighborhood_xyz
        return neighborhood, center

class Encoder(nn.Module):
    def __init__(self, encoder_channel, point_input_dims=3):
        super().__init__()
        self.encoder_channel = encoder_channel
        self.point_input_dims = point_input_dims
        self.first_conv = nn.Sequential(
            nn.Conv1d(self.point_input_dims, 128, 1),
            nn.BatchNorm1d(128),
            nn.ReLU(inplace=True),
            nn.Conv1d(128, 256, 1)
        )
        self.second_conv = nn.Sequential(
            nn.Conv1d(512, 512, 1),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Conv1d(512, self.encoder_channel, 1)
        )

    def forward(self, point_groups):
        '''
            point_groups : B G N 3
            -----------------
            feature_global : B G C
        '''
        bs, g, n, c = point_groups.shape
        point_groups = point_groups.reshape(bs * g, n, c)
        # encoder
        feature = self.first_conv(point_groups.transpose(2, 1))  # BG 256 n
        feature_global = torch.max(feature, dim=2, keepdim=True)[0]  # BG 256 1
        feature = torch.cat([feature_global.expand(-1, -1, n), feature], dim=1)  # BG 512 n
        feature = self.second_conv(feature)  # BG 1024 n
        feature_global = torch.max(feature, dim=2, keepdim=False)[0]  # BG 1024
        return feature_global.reshape(bs, g, self.encoder_channel)


class Decoder(nn.Module):
    def __init__(self, encoder_channel, num_fine):
        super().__init__()
        self.num_fine = num_fine
        self.grid_size = 2
        self.num_coarse = self.num_fine // 4
        assert num_fine % 4 == 0

        self.mlp = nn.Sequential(
            nn.Linear(encoder_channel, 1024),
            nn.ReLU(inplace=True),
            nn.Linear(1024, 1024),
            nn.ReLU(inplace=True),
            nn.Linear(1024, 3 * self.num_coarse)
        )
        self.final_conv = nn.Sequential(
            nn.Conv1d(encoder_channel + 3 + 2, 512, 1),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Conv1d(512, 512, 1),
            nn.BatchNorm1d(512),
            nn.ReLU(inplace=True),
            nn.Conv1d(512, 3, 1)
        )
        a = torch.linspace(-0.05, 0.05, steps=self.grid_size, dtype=torch.float).view(1, self.grid_size).expand(
            self.grid_size, self.grid_size).reshape(1, -1)
        b = torch.linspace(-0.05, 0.05, steps=self.grid_size, dtype=torch.float).view(self.grid_size, 1).expand(
            self.grid_size, self.grid_size).reshape(1, -1)
        self.folding_seed = torch.cat([a, b], dim=0).view(1, 2, self.grid_size ** 2)  # 1 2 S

    def forward(self, feature_global):
        '''
            feature_global : B G C
            -------
            coarse : B G M 3
            fine : B G N 3

        '''
        bs, g, c = feature_global.shape
        feature_global = feature_global.reshape(bs * g, c)

        coarse = self.mlp(feature_global).reshape(bs * g, self.num_coarse, 3)  # BG M 3

        point_feat = coarse.unsqueeze(2).expand(-1, -1, self.grid_size ** 2, -1)  # BG (M) S 3
        point_feat = point_feat.reshape(bs * g, self.num_fine, 3).transpose(2, 1)  # BG 3 N

        seed = self.folding_seed.unsqueeze(2).expand(bs * g, -1, self.num_coarse, -1)  # BG 2 M (S)
        seed = seed.reshape(bs * g, -1, self.num_fine).to(feature_global.device)  # BG 2 N

        feature_global = feature_global.unsqueeze(2).expand(-1, -1, self.num_fine)  # BG 1024 N
        feat = torch.cat([feature_global, seed, point_feat], dim=1)  # BG C N

        center = coarse.unsqueeze(2).expand(-1, -1, self.grid_size ** 2, -1)  # BG (M) S 3
        center = center.reshape(bs * g, self.num_fine, 3).transpose(2, 1)  # BG 3 N

        fine = self.final_conv(feat) + center  # BG 3 N
        fine = fine.reshape(bs, g, 3, self.num_fine).transpose(-1, -2)
        coarse = coarse.reshape(bs, g, self.num_coarse, 3)
        return coarse, fine


class DiscreteVAE(nn.Module):
    def __init__(self, config, **kwargs):
        super().__init__()
        self.group_size = config.group_size
        self.num_group = config.num_group
        self.encoder_dims = config.encoder_dims
        self.tokens_dims = config.tokens_dims

        self.decoder_dims = config.decoder_dims
        self.num_tokens = config.num_tokens

        self.group_divider = Group(num_group=self.num_group, group_size=self.group_size)
        self.encoder = Encoder(encoder_channel=self.encoder_dims)
        self.dgcnn_1 = DGCNN(encoder_channel=self.encoder_dims, output_channel=self.num_tokens)
        self.codebook = nn.Parameter(torch.randn(self.num_tokens, self.tokens_dims))

        self.dgcnn_2 = DGCNN(encoder_channel=self.tokens_dims, output_channel=self.decoder_dims)
        self.decoder = Decoder(encoder_channel=self.decoder_dims, num_fine=self.group_size)
        # self.build_loss_func()

    # def build_loss_func(self):
    #     self.loss_func_cdl1 = ChamferDistanceL1().cuda()
    #     self.loss_func_cdl2 = ChamferDistanceL2().cuda()
    #     self.loss_func_emd = emd().cuda()

    def recon_loss(self, ret, gt):
        whole_coarse, whole_fine, coarse, fine, group_gt, _ = ret

        bs, g, _, _ = coarse.shape

        coarse = coarse.reshape(bs * g, -1, 3).contiguous()
        fine = fine.reshape(bs * g, -1, 3).contiguous()
        group_gt = group_gt.reshape(bs * g, -1, 3).contiguous()

        loss_coarse_block = self.loss_func_cdl1(coarse, group_gt)
        loss_fine_block = self.loss_func_cdl1(fine, group_gt)

        loss_recon = loss_coarse_block + loss_fine_block

        return loss_recon

    def get_loss(self, ret, gt):
        # reconstruction loss
        loss_recon = self.recon_loss(ret, gt)
        # kl divergence
        logits = ret[-1]  # B G N
        softmax = F.softmax(logits, dim=-1)
        mean_softmax = softmax.mean(dim=1)
        log_qy = torch.log(mean_softmax)
        log_uniform = torch.log(torch.tensor([1. / self.num_tokens], device=gt.device))
        loss_klv = F.kl_div(log_qy, log_uniform.expand(log_qy.size(0), log_qy.size(1)), None, None, 'batchmean',
                            log_target=True)

        return loss_recon, loss_klv

    def forward(self, inp, temperature=1., hard=False, **kwargs):
        neighborhood, center = self.group_divider(inp)
        logits = self.encoder(neighborhood)  # B G C
        logits = self.dgcnn_1(logits, center)  # B G N
        soft_one_hot = F.gumbel_softmax(logits, tau=temperature, dim=2, hard=hard)  # B G N
        sampled = torch.einsum('b g n, n c -> b g c', soft_one_hot, self.codebook)  # B G C
        feature = self.dgcnn_2(sampled, center)
        coarse, fine = self.decoder(feature)

        with torch.no_grad():
            whole_fine = (fine + center.unsqueeze(2)).reshape(inp.size(0), -1, 3)
            whole_coarse = (coarse + center.unsqueeze(2)).reshape(inp.size(0), -1, 3)

        assert fine.size(2) == self.group_size
        ret = (whole_coarse, whole_fine, coarse, fine, neighborhood, logits)
        return ret