File size: 37,858 Bytes
744eb4e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 |
import argparse
import json
import os
from utils import OpenAIGPT
from tqdm import tqdm
from multiprocessing import Pool
import random
random.seed(0)
import re
gpt4_open_free_from_cls_prompt = """Analyze two sentences and determine if they're referring to the same general object or concept, focusing on the type of object, not attributes such as color, size, or shape. Respond with 'T' if they refer to the same thing and 'F' if not. Also, provide a brief rationale (no more than 20 words) for your judgment.
Example:
Input: 1. Spiral staircase that goes from a ground floor. 2. This is a 3D model of wooden stairs in light brown
Output: T#Both refer to a staircase.
Now, analyze the following:
Input: 1. {ground_truth} 2. {model_output}
Output: """ # * about 230 input tokens
chatgpt_close_set_cls_prompt = """Given the following free-form description of a 3D object, please determine the most probable class index from the following 40 available categories, even if the description doesn't clearly refer to any one of them. Make your best-educated guess based on the information provided. If the description already contains a valid index, then the index should be selected. If it contains more than one valid index, then randomly select one index (specify your reason). If there is no valid index and it cannot be inferred from the information, return '-1#NA#Cannot infer'.
Categories:
{candidate_lists}
Reply with the format of 'index#class#short reason (no more than 10 words)'.
Examples:
Input: This is a 3D object model of a cartoon white truck.
Output: 7#car#Closest match to 'car' in categories.
Input: A green leaf in a flower pot.
Output: 26#plant#The primary subject 'leaf' directly indicates a plant.
Input: It's difficult to determine the exact type of this object due to insufficient details. But it seems to be like a piece of furniture.
Output: 33#table#Randomly select one kind of furniture from the list.
Input: I cannot determine the specific type of the object without additional information or context.
Output: -1#NA#Cannot infer.
Now analyze the following:
Input: """
gpt4_object_captioning_prompt = """Evaluate a model-generated caption against a human-generated caption (ground truth) for a 3D model. Identify the aspects mentioned in the human caption and calculate the percentage of these aspects correctly mentioned or partially matched in the model caption. Score from 0 to 100, where each aspect contributes equally to the score. Consider similar concepts for partial score.
Provide your score (0-100) and a short justification (less than 15 words) in the format of 'score#reason'
Example:
Human: A white brown skeleton
Model: This is a 3D model of a small, cartoon-like robot. It has a spherical body and is covered in a layer of white dust.
Output: 50#mention white; skeleton and robot have similar appearence.
Now score the following:
Human: {ground_truth}
Model: {model_output}
Output: """
chatgpt_object_captioning_prompt = gpt4_object_captioning_prompt
chatgpt_open_free_from_cls_prompt = gpt4_open_free_from_cls_prompt
gpt4_close_set_cls_prompt = chatgpt_close_set_cls_prompt
GPT_PRICES = {
# * check https://openai.com/pricing for updated price
"gpt-3.5-turbo-0613": {
"price_1k_prompt_tokens": 0.0015,
"price_1k_completion_tokens": 0.002
},
"gpt-3.5-turbo-1106": {
"price_1k_prompt_tokens": 0.0010,
"price_1k_completion_tokens": 0.002
},
"gpt-4-0613":{
"price_1k_prompt_tokens": 0.03,
"price_1k_completion_tokens": 0.06
},
"gpt-4-1106-preview":{
"price_1k_prompt_tokens": 0.01,
"price_1k_completion_tokens": 0.03
}
}
class OpenAIOpenFreeFormClsEvaluator():
def __init__(self, inputs, output_dir, output_file, model_type="gpt-4-0613"):
"""
Args:
inputs: A dictionary containing the results of the evaluation. It contains two keys: "results" and "prompt".
"prompt": str
"results": [
{
"object_id": str,
"model_output": str,
"ground_truth": str
}
]
"""
print("-" * 80)
print("Initializing OpenAIEvaluator...")
self.results = inputs['results']# * contains two keys: "results" and "prompt"
self.inference_prompt = inputs['prompt'] # * used to prompt PointLLM
self.correct_predictions = 0
self.total_predictions = 0
self.invalid_responses = 0
self.response_data = [] # to save all the response data by openaigpt
self.model_type = model_type
self.check_model_type()
self.prompt_tokens = 0
self.completion_tokens = 0
self.default_chat_parameters = {
"model": model_type,
"temperature": 1,
"top_p": 1,
"max_tokens": 2048
}
# * price
self.price_1k_prompt_tokens = GPT_PRICES[model_type]["price_1k_prompt_tokens"]
self.price_1k_completion_tokens = GPT_PRICES[model_type]["price_1k_completion_tokens"]
print(f"OpenAIGPT config: ")
print(self.default_chat_parameters)
self.openaigpt = OpenAIGPT(**self.default_chat_parameters)
self.gpt_prompt = chatgpt_open_free_from_cls_prompt if "gpt-3.5" in model_type else gpt4_open_free_from_cls_prompt
self.output_dir = output_dir
self.output_file = output_file
self.temp_output_file = self.output_file.replace(".json", "_processed_temp.json")
def check_model_type(self):
# * warning if not using gpt-4, recommend using gpt-4 for this task
if "gpt-4" not in self.model_type:
print(f"[WARNING] You are using {self.model_type} for evaluation. We recommend using gpt-4 for this task.")
def resume_processing(self):
processed_results_path = os.path.join(self.output_dir, self.temp_output_file)
if os.path.exists(processed_results_path):
print("-" * 80)
# * print resuming
print(f"Resuming processing...")
print(f"Loading processed results from {processed_results_path}...")
with open(processed_results_path, "r") as f:
saved_results = json.load(f)
self.correct_predictions = saved_results["correct_predictions"]
self.total_predictions = saved_results["total_predictions"]
self.invalid_responses = saved_results["invalid_responses"]
self.response_data = saved_results["results"]
self.prompt_tokens = saved_results["prompt_tokens"]
self.completion_tokens = saved_results["completion_tokens"]
print(f"Processed results: {len(self.response_data)}")
# * print the length of all the data
print(f"Total results: {len(self.results)}")
# * remove processed data
processed_ids = [d['object_id'] for d in self.response_data]
self.results = [r for r in self.results if r['object_id'] not in processed_ids]
print(f"Remaining results: {len(self.results)}")
def remove_temp_file(self):
processed_results_path = os.path.join(self.output_dir, self.temp_output_file)
if os.path.exists(processed_results_path):
os.remove(processed_results_path)
print("-" * 80)
print(f"Removed Temporary file {processed_results_path}")
def parse_gpt_response_evaluate(self, gpt_response):
gpt_response = gpt_response.strip()
cls_result = gpt_response[0].upper()
reason = gpt_response[2:] if len(gpt_response) > 2 else ""
if cls_result not in ['T', 'F']:
self.invalid_responses += 1
return 0, "INVALID", gpt_response
accuracy = 1 if cls_result == 'T' else 0
return accuracy, cls_result, reason
def evaluate_result(self, result):
object_id = result['object_id']
ground_truth = result['ground_truth']
model_output = result['model_output']
messages = [{"role": "user", "content": self.gpt_prompt.format(ground_truth=ground_truth, model_output=model_output)}]
gpt_response = self.openaigpt.safe_chat_complete(messages, content_only=False)
prompt_tokens = gpt_response['usage']['prompt_tokens']
completion_tokens = gpt_response['usage']['completion_tokens']
gpt_response = gpt_response['choices'][0]["message"]['content']
accuracy, cls_result, reason = self.parse_gpt_response_evaluate(gpt_response) # return 0, "INVALID", gpt_response if not valid
return object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens
def evaluate(self):
self.resume_processing()
print('-' * 80)
print("Starting single-thread evaluation...")
results = self.results
try:
for result in tqdm(results):
object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens = self.evaluate_result(result)
self.correct_predictions += accuracy
self.total_predictions += 1
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
# save the object_id, model_output, ground_truth, gpt_cls_result and gpt_reason for each result
self.response_data.append({
'object_id': object_id,
'ground_truth': ground_truth,
'model_output': model_output,
'gpt_cls_result': cls_result,
'gpt_reason': reason
})
print("Evaluation finished.")
self.save_results()
self.print_results()
self.remove_temp_file()
except (Exception, KeyboardInterrupt) as e:
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...")
self.save_results(is_temp=True)
exit()
def parallel_evaluate(self, num_workers=20):
self.resume_processing()
print('-' * 80)
print("Starting parallel evaluation...")
results = self.results
try:
with Pool(num_workers) as pool:
with tqdm(total=len(results)) as pbar: # create a progress bar
for object_id, model_output, ground_truth, accuracy, cls_result, reason, prompt_tokens, completion_tokens in pool.imap_unordered(self.evaluate_result, results):
self.correct_predictions += accuracy
self.total_predictions += 1
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
if cls_result == 'INVALID':
self.invalid_responses += 1
# save the object_id, model_output, ground_truth, gpt_cls_result and gpt_reason for each result
self.response_data.append({
'object_id': object_id,
'ground_truth': ground_truth,
'model_output': model_output,
'gpt_cls_result': cls_result,
'gpt_reason': reason
})
pbar.update() # update the progress bar
print("Parallel evaluation finished.")
self.save_results()
self.print_results()
self.remove_temp_file()
except (Exception, KeyboardInterrupt) as e:
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...")
self.save_results(is_temp=True)
exit()
def save_results(self, is_temp=False):
if is_temp:
output_path = os.path.join(self.output_dir, self.temp_output_file)
else:
output_path = os.path.join(self.output_dir, self.output_file)
if self.total_predictions - self.invalid_responses == 0:
accuracy = 0 # * no results and get error
else:
accuracy = self.correct_predictions / (self.total_predictions - self.invalid_responses) * 100
with open(output_path, 'w') as f:
results_to_save = {
'inference_prompt': self.inference_prompt,
'prompt': self.gpt_prompt,
'accuracy': f"{accuracy:.2f}%",
'total_predictions': self.total_predictions,
'correct_predictions': self.correct_predictions,
'invalid_responses': self.invalid_responses,
'prompt_tokens': self.prompt_tokens,
'completion_tokens': self.completion_tokens,
'GPT_cost': self.get_costs(),
'results': self.response_data,
}
json.dump(results_to_save, f, indent=2)
print(f"Results saved to {output_path}")
# * print the length of saved results
print(f"Saved {len(self.response_data)} results in total.")
def print_results(self):
print('-' * 80)
if self.total_predictions - self.invalid_responses == 0:
accuracy = 0 # * no results and get error
else:
accuracy = self.correct_predictions / (self.total_predictions - self.invalid_responses) * 100
print("Results:")
print(f"Accuracy: {accuracy:.2f}%")
print(f"Total Predictions: {self.total_predictions}")
print(f"Correct Predictions: {self.correct_predictions}")
print(f"Invalid Responses: {self.invalid_responses}")
self.print_costs()
def print_costs(self):
print(f"Prompt Tokens Price: {self.prompt_tokens * self.price_1k_prompt_tokens / 1000:.2f} USD")
print(f"Completion Tokens Price: {self.completion_tokens * self.price_1k_completion_tokens / 1000:.2f} USD")
def get_costs(self):
return self.prompt_tokens * self.price_1k_prompt_tokens / 1000 + self.completion_tokens * self.price_1k_completion_tokens / 1000
class OpenAICloseSetClsEvaluator(OpenAIOpenFreeFormClsEvaluator):
def __init__(self, inputs, output_dir, output_file, model_type="gpt-3.5-turbo-0613"):
super().__init__(inputs, output_dir, output_file, model_type)
self.gpt_prompt = chatgpt_close_set_cls_prompt if "gpt-3.5" in model_type else gpt4_close_set_cls_prompt
self.invalid_correct_predictions = 0 # * random choice and correct coincidently
# * import category names
try:
# * load a txt files of category names
catfile = os.path.join(os.path.dirname(__file__), '../data/modelnet_config/modelnet40_shape_names_modified.txt') # * i.e. pointllm/data/modelnet_config/modelnet40_shape_names_modified.txt
self.candidate_lists_names = [line.strip() for line in open(catfile)] # * list of category names
except:
print(f"Current categories file is {catfile}. Need to move the category file to pointllm/eval/configs/.")
# * make the prompt
candidate_lists = [f'{i}: {cat}' for i, cat in enumerate(self.candidate_lists_names)]
self.num_categories = len(candidate_lists)
self.candidate_lists = '\n'.join(candidate_lists)
self.gpt_prompt = self.gpt_prompt.format(num_categories=self.num_categories, candidate_lists=self.candidate_lists) + "{model_output}\nOutput: "
def check_model_type(self):
# * no need to check for this task
return
def resume_processing(self):
processed_results_path = os.path.join(self.output_dir, self.temp_output_file)
if os.path.exists(processed_results_path):
print("-" * 80)
# * print resuming
print(f"Resuming processing...")
print(f"Loading processed results from {processed_results_path}...")
with open(processed_results_path, "r") as f:
saved_results = json.load(f)
self.correct_predictions = saved_results["correct_predictions"]
self.total_predictions = saved_results["total_predictions"]
self.invalid_responses = saved_results["invalid_responses"]
self.invalid_correct_predictions = saved_results["invalid_correct_predictions"]
self.response_data = saved_results["results"]
self.prompt_tokens = saved_results["prompt_tokens"]
self.completion_tokens = saved_results["completion_tokens"]
print(f"Processed results: {len(self.response_data)}")
# * print the length of all the data
print(f"Total results: {len(self.results)}")
# * remove processed data
processed_ids = [d['object_id'] for d in self.response_data]
self.results = [r for r in self.results if r['object_id'] not in processed_ids]
print(f"Remaining results: {len(self.results)}")
def parse_gpt_response_evaluate(self, gpt_response, ground_truth):
"""
Argument:
gpt_response: str, index#label#short_reason
groud_truth: int
"""
# * use regular expression to extract
pattern = r'(\d+#[^#]*#.*$)'
match = re.search(pattern, gpt_response)
gpt_response = match.group(1) if match else gpt_response
gpt_response = gpt_response.strip()
gpt_response_list = gpt_response.split('#')
cls_result = gpt_response_list[0]
cls_label = gpt_response_list[1] if len(gpt_response_list) > 1 else ""
reason = gpt_response_list[2] if len(gpt_response_list) > 2 else ""
try:
# * convert to int
cls_result = int(cls_result)
if cls_result not in range(self.num_categories) or cls_label == "NA":
# * not valid range
cls_result = -1
except ValueError:
print(f"Error: unale to parse {gpt_response}.")
cls_result = -1
if cls_result == -1:
# * random choose one index from 0 to self.num_categories
cls_result = random.choice(range(self.num_categories))
cls_label = "INVALID"
reason = gpt_response
self.invalid_responses += 1
accuracy = 1 if cls_result == ground_truth else 0
return accuracy, cls_result, cls_label, reason
def evaluate_result(self, result):
object_id = result.get('object_id', -1)
ground_truth = result['ground_truth']
ground_truth_label = result['label_name']
model_output = result['model_output']
messages = [{"role": "user", "content": self.gpt_prompt.format(model_output=model_output)}]
gpt_response = self.openaigpt.safe_chat_complete(messages, content_only=False)
prompt_tokens = gpt_response['usage']['prompt_tokens']
completion_tokens = gpt_response['usage']['completion_tokens']
gpt_response = gpt_response['choices'][0]["message"]['content']
accuracy, cls_result, cls_label, reason = self.parse_gpt_response_evaluate(gpt_response, ground_truth) # return 0, "INVALID", gpt_response if not valid
return object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens
def evaluate(self):
self.resume_processing()
print('-' * 80)
print("Starting single-thread evaluation...")
results = self.results
try:
for result in tqdm(results):
object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens = self.evaluate_result(result)
self.correct_predictions += accuracy
self.total_predictions += 1
if cls_label == "INVALID":
self.invalid_correct_predictions += accuracy
self.invalid_responses += 1
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
# save the object_id, model_output, ground_truth, gpt_cls_result and gpt_reason for each result
self.response_data.append({
'object_id': object_id,
'ground_truth': ground_truth,
'gpt_cls_result': cls_result,
'ground_truth_label': ground_truth_label,
'gpt_cls_label': cls_label,
'model_output': model_output,
'gpt_reason': reason,
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens
})
print("Evaluation finished.")
self.save_results()
self.print_results()
self.remove_temp_file()
except (Exception, KeyboardInterrupt) as e:
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...")
print(f"Current sample is {result}.")
self.save_results(is_temp=True)
exit()
def parallel_evaluate(self, num_workers=20):
self.resume_processing()
print('-' * 80)
print("Starting parallel evaluation...")
results = self.results
try:
with Pool(num_workers) as pool:
with tqdm(total=len(results)) as pbar: # create a progress bar
for object_id, model_output, ground_truth, accuracy, cls_result, cls_label, reason, ground_truth_label, prompt_tokens, completion_tokens in pool.imap_unordered(self.evaluate_result, results):
self.correct_predictions += accuracy
self.total_predictions += 1
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
if cls_label == "INVALID":
self.invalid_correct_predictions += accuracy
self.invalid_responses += 1
# save the object_id, model_output, ground_truth, gpt_cls_result and gpt_reason for each result
self.response_data.append({
'object_id': object_id,
'ground_truth': ground_truth,
'gpt_cls_result': cls_result,
'ground_truth_label': ground_truth_label,
'gpt_cls_label': cls_label,
'model_output': model_output,
'gpt_reason': reason,
'prompt_tokens': prompt_tokens,
'completion_tokens': completion_tokens
})
pbar.update() # update the progress bar
print("Parallel evaluation finished.")
self.save_results()
self.print_results()
self.remove_temp_file()
except (Exception, KeyboardInterrupt) as e:
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...")
self.save_results(is_temp=True)
exit()
def save_results(self, is_temp=False):
if is_temp:
output_path = os.path.join(self.output_dir, self.temp_output_file)
else:
output_path = os.path.join(self.output_dir, self.output_file)
if self.total_predictions - self.invalid_responses == 0:
accuracy = 0 # * no results and get error
clean_accuracy = 0
else:
accuracy = self.correct_predictions / self.total_predictions * 100
clean_accuracy = (self.correct_predictions - self.invalid_correct_predictions) / (self.total_predictions - self.invalid_responses) * 100
with open(output_path, 'w') as f:
results_to_save = {
'inference_prompt': self.inference_prompt,
'prompt': self.gpt_prompt,
'accuracy': f"{accuracy:.2f}%",
'clean_accuracy': f"{clean_accuracy:.2f}%",
'total_predictions': self.total_predictions,
'correct_predictions': self.correct_predictions,
'invalid_correct_predictions': self.invalid_correct_predictions,
'invalid_responses': self.invalid_responses,
'prompt_tokens': self.prompt_tokens,
'completion_tokens': self.completion_tokens,
'GPT_cost': self.get_costs(),
'results': self.response_data,
}
json.dump(results_to_save, f, indent=2)
print(f"Results saved to {output_path}")
# * print the length of saved results
print(f"Saved {len(self.response_data)} results in total.")
def print_results(self):
print('-' * 80)
if self.total_predictions - self.invalid_responses == 0:
accuracy = 0 # * no results and get error
else:
accuracy = self.correct_predictions / self.total_predictions * 100
clean_accuracy = (self.correct_predictions - self.invalid_correct_predictions) / (self.total_predictions - self.invalid_responses) * 100
accuracy = self.correct_predictions / self.total_predictions * 100
print("Results:")
print(f"Accuracy: {accuracy:.2f}%")
print(f"Clean Accuracy: {clean_accuracy:.2f}%",)
print(f"Total Predictions: {self.total_predictions}")
print(f"Correct Predictions: {self.correct_predictions}")
print(f"Invalid Correct Predictions: {self.invalid_correct_predictions}")
print(f"Invalid Responses: {self.invalid_responses}")
print(f"Prompt Tokens: {self.prompt_tokens}")
print(f"Completion Tokens: {self.completion_tokens}")
self.print_costs()
class OpenAIObjectCaptioningEvaluator(OpenAIOpenFreeFormClsEvaluator):
def __init__(self, inputs, output_dir, output_file, model_type="gpt-4-0613"):
super().__init__(inputs, output_dir, output_file, model_type)
self.gpt_prompt = chatgpt_object_captioning_prompt if "gpt-3.5" in model_type else gpt4_object_captioning_prompt
self.total_scores = 0
def resume_processing(self):
processed_results_path = os.path.join(self.output_dir, self.temp_output_file)
if os.path.exists(processed_results_path):
print("-" * 80)
# * print resuming
print(f"Resuming processing...")
print(f"Loading processed results from {processed_results_path}...")
with open(processed_results_path, "r") as f:
saved_results = json.load(f)
self.total_scores = float(saved_results["total_score"])
self.total_predictions = saved_results["total_predictions"]
self.invalid_responses = saved_results["invalid_responses"]
self.response_data = saved_results["results"]
self.prompt_tokens = saved_results["prompt_tokens"]
self.completion_tokens = saved_results["completion_tokens"]
print(f"Processed results: {len(self.response_data)}")
# * print the length of all the data
print(f"Total results: {len(self.results)}")
# * remove processed data
processed_ids = [d['object_id'] for d in self.response_data]
self.results = [r for r in self.results if r['object_id'] not in processed_ids]
print(f"Remaining results: {len(self.results)}")
def parse_gpt_response_evaluate(self, gpt_response, ground_truth):
"""
Argument:
gpt_response: str, index#label#short_reason
groud_truth: int
"""
# * use regular expression to extract
pattern = r'(\d*#.*)'
match = re.search(pattern, gpt_response)
gpt_response = match.group(1) if match else gpt_response
gpt_response = gpt_response.strip()
gpt_response_list = gpt_response.split('#')
gpt_score = gpt_response_list[0]
reason = gpt_response_list[1] if len(gpt_response_list) > 1 else ""
try:
# * convert to int
gpt_score = int(gpt_score)
if gpt_score not in range(101): # * in 0-100
# * not valid range
gpt_score = -1
except ValueError:
print(f"Error: unale to parse {gpt_response}.")
gpt_score = -1
if gpt_score == -1:
reason = gpt_response
return gpt_score, reason
def evaluate_result(self, result):
object_id = result.get('object_id', -1)
ground_truth = result['ground_truth']
model_output = result['model_output']
messages = [{"role": "user", "content": self.gpt_prompt.format(ground_truth=ground_truth, model_output=model_output)}]
gpt_response = self.openaigpt.safe_chat_complete(messages, content_only=False)
prompt_tokens = gpt_response['usage']['prompt_tokens']
completion_tokens = gpt_response['usage']['completion_tokens']
gpt_response = gpt_response['choices'][0]["message"]['content']
gpt_score, reason = self.parse_gpt_response_evaluate(gpt_response, ground_truth) # return 0, "INVALID", gpt_response if not valid
return object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens
def evaluate(self):
self.resume_processing()
print('-' * 80)
print("Starting single-thread evaluation...")
results = self.results
try:
for result in tqdm(results):
object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens = self.evaluate_result(result)
self.total_scores += gpt_score if gpt_score != -1 else 0
self.total_predictions += 1
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
if gpt_score == -1:
self.invalid_responses += 1
# save the object_id, model_output, ground_truth, gpt_cls_result and gpt_reason for each result
self.response_data.append({
'object_id': object_id,
'ground_truth': ground_truth,
'model_output': model_output,
"gpt_score": gpt_score,
'gpt_reason': reason
})
print("Evaluation finished.")
self.save_results()
self.print_results()
self.remove_temp_file()
except (Exception, KeyboardInterrupt) as e:
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...")
self.save_results(is_temp=True)
exit()
def parallel_evaluate(self, num_workers=20):
self.resume_processing()
print('-' * 80)
print("Starting parallel evaluation...")
results = self.results
try:
with Pool(num_workers) as pool:
with tqdm(total=len(results)) as pbar: # create a progress bar
for object_id, model_output, ground_truth, gpt_score, reason, prompt_tokens, completion_tokens in pool.imap_unordered(self.evaluate_result, results):
self.total_scores += gpt_score if gpt_score != -1 else 0
self.total_predictions += 1
self.prompt_tokens += prompt_tokens
self.completion_tokens += completion_tokens
if gpt_score == -1:
self.invalid_responses += 1
# save the object_id, model_output, ground_truth, gpt_cls_result and gpt_reason for each result
self.response_data.append({
'object_id': object_id,
'ground_truth': ground_truth,
'model_output': model_output,
"gpt_score": gpt_score,
'gpt_reason': reason
})
pbar.update() # update the progress bar
print("Parallel evaluation finished.")
self.save_results()
self.print_results()
self.remove_temp_file()
except (Exception, KeyboardInterrupt) as e:
print(f"Error {e} occurred during parallel evaluation. Saving processed results to temporary file...")
self.save_results(is_temp=True)
exit()
def save_results(self, is_temp=False):
if is_temp:
output_path = os.path.join(self.output_dir, self.temp_output_file)
else:
output_path = os.path.join(self.output_dir, self.output_file)
if self.total_predictions - self.invalid_responses == 0:
average_score = 0 # * no results and get error
else:
average_score = self.total_scores / (self.total_predictions - self.invalid_responses)
with open(output_path, 'w') as f:
results_to_save = {
'inference_prompt': self.inference_prompt,
'gpt_prompt': self.gpt_prompt,
'average_score': f"{average_score:.2f}",
'total_score': f"{self.total_scores:.2f}",
'total_predictions': self.total_predictions,
'invalid_responses': self.invalid_responses,
'prompt_tokens': self.prompt_tokens,
'completion_tokens': self.completion_tokens,
'GPT_cost': self.get_costs(),
'results': self.response_data,
}
json.dump(results_to_save, f, indent=2)
print(f"Results saved to {output_path}")
# * print the length of saved results
print(f"Saved {len(self.response_data)} results in total.")
def print_results(self):
print('-' * 80)
if self.total_predictions - self.invalid_responses == 0:
average_score = 0 # * no results and get error
else:
average_score = self.total_scores / (self.total_predictions - self.invalid_responses)
print("Results:")
print(f"Average Score: {average_score:.2f}")
print(f"Total Predictions: {self.total_predictions}")
print(f"Invalid Responses: {self.invalid_responses}")
print(f"Prompt Tokens: {self.prompt_tokens}")
print(f"Completion Tokens: {self.completion_tokens}")
self.print_costs()
def start_evaluation(results, output_dir, output_file, eval_type="open-free-form-classification", model_type="gpt-3.5-turbo-0613",
parallel=True, num_workers=20):
"""
Args:
results: dict or file path to the json file containing the dict
output_file: the path the final evaluation results to be saved.
"""
if isinstance(results, str):
with open(results, 'r') as fp:
results = json.load(fp)
if eval_type == "open-free-form-classification":
evaluator = OpenAIOpenFreeFormClsEvaluator(results, output_dir, output_file, model_type=model_type)
elif eval_type == "modelnet-close-set-classification":
evaluator = OpenAICloseSetClsEvaluator(results, output_dir, output_file, model_type=model_type)
elif eval_type == "object-captioning":
evaluator = OpenAIObjectCaptioningEvaluator(results, output_dir, output_file, model_type=model_type)
else:
raise NotImplementedError(f"eval_type {eval_type} not supported.")
if parallel:
evaluator.parallel_evaluate(num_workers=num_workers)
else:
evaluator.evaluate()
if __name__ == "__main__":
parser = argparse.ArgumentParser()
parser.add_argument("--results_path", type=str, \
default="", help="Path to the results file.")
parser.add_argument("--output_dir", type=str, default=None, help="Path to the output directory.")
parser.add_argument("--model_type", type=str, default="gpt-4-0613", choices=["gpt-3.5-turbo-0613", "gpt-3.5-turbo-1106", "gpt-4-0613", "gpt-4-1106-preview"], help="Type of the model used to evaluate.")
parser.add_argument("--parallel", default=True, action="store_true", help="Whether to use parallel evaluation.")
parser.add_argument("--num_workers", type=int, default=15, help="Number of workers to use for parallel evaluation.")
parser.add_argument("--eval_type", type=str, choices=["modelnet-close-set-classification", "open-free-form-classification", "object-captioning"], default="object-captioning")
args = parser.parse_args()
if args.output_dir is None:
args.output_dir = os.path.dirname(args.results_path)
output_file = os.path.basename(args.results_path).replace(".json", f"_evaluated_{args.model_type}.json")
# if exists, then exit
if os.path.exists(os.path.join(args.output_dir, output_file)):
print(f"[INFO] Evaulated results already exists in {os.path.join(args.output_dir, output_file)}.")
exit()
start_evaluation(results=args.results_path, output_dir=args.output_dir, output_file=output_file, eval_type=args.eval_type, model_type=args.model_type,
parallel=args.parallel, num_workers=args.num_workers)
|