Spaces:
Runtime error
Runtime error
File size: 11,982 Bytes
508b842 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 |
from dataclasses import dataclass
from typing import Optional, Tuple, Union
import torch
import torch.nn as nn
import torch.utils.checkpoint
from diffusers import ModelMixin
from diffusers.configuration_utils import (ConfigMixin,
register_to_config)
from diffusers.utils import BaseOutput, logging
from .embeddings import TimestepEmbedding, Timesteps
from .unet_blocks import (DownBlock2D,
UNetMidMCABlock2D,
UpBlock2D,
get_down_block,
get_up_block)
logger = logging.get_logger(__name__)
@dataclass
class UNetOutput(BaseOutput):
sample: torch.FloatTensor
class UNet(ModelMixin, ConfigMixin):
_supports_gradient_checkpointing = True
@register_to_config
def __init__(
self,
sample_size: Optional[int] = None,
in_channels: int = 4,
out_channels: int = 4,
flip_sin_to_cos: bool = True,
freq_shift: int = 0,
down_block_types: Tuple[str] = None,
up_block_types: Tuple[str] = None,
block_out_channels: Tuple[int] = (320, 640, 1280, 1280),
layers_per_block: int = 1,
downsample_padding: int = 1,
mid_block_scale_factor: float = 1,
act_fn: str = "silu",
norm_num_groups: int = 32,
norm_eps: float = 1e-5,
cross_attention_dim: int = 1280,
attention_head_dim: int = 8,
channel_attn: bool = False,
content_encoder_downsample_size: int = 4,
content_start_channel: int = 16,
reduction: int = 32,
):
super().__init__()
self.content_encoder_downsample_size = content_encoder_downsample_size
self.sample_size = sample_size
time_embed_dim = block_out_channels[0] * 4
# input
self.conv_in = nn.Conv2d(in_channels, block_out_channels[0], kernel_size=3, padding=(1, 1))
# time
self.time_proj = Timesteps(block_out_channels[0], flip_sin_to_cos, freq_shift)
timestep_input_dim = block_out_channels[0]
self.time_embedding = TimestepEmbedding(timestep_input_dim, time_embed_dim)
self.down_blocks = nn.ModuleList([])
self.mid_block = None
self.up_blocks = nn.ModuleList([])
# down
output_channel = block_out_channels[0]
for i, down_block_type in enumerate(down_block_types):
input_channel = output_channel
output_channel = block_out_channels[i]
is_final_block = i == len(block_out_channels) - 1
if i != 0:
content_channel = content_start_channel * (2 ** (i-1))
else:
content_channel = 0
print("Load the down block ", down_block_type)
down_block = get_down_block(
down_block_type,
num_layers=layers_per_block,
in_channels=input_channel,
out_channels=output_channel,
temb_channels=time_embed_dim,
add_downsample=not is_final_block,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim,
downsample_padding=downsample_padding,
content_channel=content_channel,
reduction=reduction,
channel_attn=channel_attn,
)
self.down_blocks.append(down_block)
# mid
self.mid_block = UNetMidMCABlock2D(
in_channels=block_out_channels[-1],
temb_channels=time_embed_dim,
channel_attn=channel_attn,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
output_scale_factor=mid_block_scale_factor,
resnet_time_scale_shift="default",
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim,
resnet_groups=norm_num_groups,
content_channel=content_start_channel*(2**(content_encoder_downsample_size - 1)),
reduction=reduction,
)
# count how many layers upsample the images
self.num_upsamplers = 0
# up
reversed_block_out_channels = list(reversed(block_out_channels))
output_channel = reversed_block_out_channels[0]
for i, up_block_type in enumerate(up_block_types):
is_final_block = i == len(block_out_channels) - 1
prev_output_channel = output_channel
output_channel = reversed_block_out_channels[i]
input_channel = reversed_block_out_channels[min(i + 1, len(block_out_channels) - 1)]
# add upsample block for all BUT final layer
if not is_final_block:
add_upsample = True
self.num_upsamplers += 1
else:
add_upsample = False
content_channel = content_start_channel * (2 ** (content_encoder_downsample_size - i - 1))
print("Load the up block ", up_block_type)
up_block = get_up_block(
up_block_type,
num_layers=layers_per_block + 1, # larger 1 than the down block
in_channels=input_channel,
out_channels=output_channel,
prev_output_channel=prev_output_channel,
temb_channels=time_embed_dim,
add_upsample=add_upsample,
resnet_eps=norm_eps,
resnet_act_fn=act_fn,
resnet_groups=norm_num_groups,
cross_attention_dim=cross_attention_dim,
attn_num_head_channels=attention_head_dim,
upblock_index=i,
)
self.up_blocks.append(up_block)
prev_output_channel = output_channel
# out
self.conv_norm_out = nn.GroupNorm(num_channels=block_out_channels[0], num_groups=norm_num_groups, eps=norm_eps)
self.conv_act = nn.SiLU()
self.conv_out = nn.Conv2d(block_out_channels[0], out_channels, 3, padding=1)
def set_attention_slice(self, slice_size):
if slice_size is not None and self.config.attention_head_dim % slice_size != 0:
raise ValueError(
f"Make sure slice_size {slice_size} is a divisor of "
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
)
if slice_size is not None and slice_size > self.config.attention_head_dim:
raise ValueError(
f"Chunk_size {slice_size} has to be smaller or equal to "
f"the number of heads used in cross_attention {self.config.attention_head_dim}"
)
for block in self.down_blocks:
if hasattr(block, "attentions") and block.attentions is not None:
block.set_attention_slice(slice_size)
self.mid_block.set_attention_slice(slice_size)
for block in self.up_blocks:
if hasattr(block, "attentions") and block.attentions is not None:
block.set_attention_slice(slice_size)
def _set_gradient_checkpointing(self, module, value=False):
if isinstance(module, (DownBlock2D, UpBlock2D)):
module.gradient_checkpointing = value
def forward(
self,
sample: torch.FloatTensor,
timestep: Union[torch.Tensor, float, int],
encoder_hidden_states: torch.Tensor,
content_encoder_downsample_size: int = 4,
return_dict: bool = False,
) -> Union[UNetOutput, Tuple]:
# By default samples have to be AT least a multiple of the overall upsampling factor.
# The overall upsampling factor is equal to 2 ** (# num of upsampling layears).
# However, the upsampling interpolation output size can be forced to fit any upsampling size
# on the fly if necessary.
default_overall_up_factor = 2**self.num_upsamplers
# upsample size should be forwarded when sample is not a multiple of `default_overall_up_factor`
forward_upsample_size = False
upsample_size = None
if any(s % default_overall_up_factor != 0 for s in sample.shape[-2:]):
logger.info("Forward upsample size to force interpolation output size.")
forward_upsample_size = True
# 1. time
timesteps = timestep # only one time
if not torch.is_tensor(timesteps):
# TODO: this requires sync between CPU and GPU. So try to pass timesteps as tensors if you can
timesteps = torch.tensor([timesteps], dtype=torch.long, device=sample.device)
elif torch.is_tensor(timesteps) and len(timesteps.shape) == 0:
timesteps = timesteps[None].to(sample.device)
# broadcast to batch dimension in a way that's compatible with ONNX/Core ML
timesteps = timesteps.expand(sample.shape[0])
t_emb = self.time_proj(timesteps)
# timesteps does not contain any weights and will always return f32 tensors
# but time_embedding might actually be running in fp16. so we need to cast here.
# there might be better ways to encapsulate this.
t_emb = t_emb.to(dtype=self.dtype)
emb = self.time_embedding(t_emb) # projection
# 2. pre-process
sample = self.conv_in(sample)
# 3. down
down_block_res_samples = (sample,)
for index, downsample_block in enumerate(self.down_blocks):
if (hasattr(downsample_block, "attentions") and downsample_block.attentions is not None) or hasattr(downsample_block, "content_attentions"):
sample, res_samples = downsample_block(
hidden_states=sample,
temb=emb,
encoder_hidden_states=encoder_hidden_states,
index=index,
)
else:
sample, res_samples = downsample_block(hidden_states=sample, temb=emb)
down_block_res_samples += res_samples
# 4. mid
if self.mid_block is not None:
sample = self.mid_block(
sample,
emb,
index=content_encoder_downsample_size,
encoder_hidden_states=encoder_hidden_states
)
# 5. up
offset_out_sum = 0
for i, upsample_block in enumerate(self.up_blocks):
is_final_block = i == len(self.up_blocks) - 1
res_samples = down_block_res_samples[-len(upsample_block.resnets) :]
down_block_res_samples = down_block_res_samples[: -len(upsample_block.resnets)]
# if we have not reached the final block and need to forward the
# upsample size, we do it here
if not is_final_block and forward_upsample_size:
upsample_size = down_block_res_samples[-1].shape[2:]
if (hasattr(upsample_block, "attentions") and upsample_block.attentions is not None) or hasattr(upsample_block, "content_attentions"):
sample, offset_out = upsample_block(
hidden_states=sample,
temb=emb,
res_hidden_states_tuple=res_samples,
style_structure_features=encoder_hidden_states[3],
encoder_hidden_states=encoder_hidden_states[2],
)
offset_out_sum += offset_out
else:
sample = upsample_block(
hidden_states=sample, temb=emb, res_hidden_states_tuple=res_samples, upsample_size=upsample_size
)
# 6. post-process
sample = self.conv_norm_out(sample)
sample = self.conv_act(sample)
sample = self.conv_out(sample)
if not return_dict:
return (sample, offset_out_sum)
return UNetOutput(sample=sample)
|