File size: 8,312 Bytes
ab2661e
6fb6ead
ab2661e
08725fa
e7df576
08725fa
a4366fd
 
ab2661e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6fb6ead
ab2661e
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
from annotated_text import annotated_text, parameters, annotation
import razdel
from transformers import AutoTokenizer, AutoModelForTokenClassification, pipeline
import streamlit as st
import torch

nltk.download('punkt')

# add the caching decorator and use custom text for spinner
@st.cache_resource(show_spinner = "Loading the model...")

def label_text(text):
	if text != "":
		tokenizer = AutoTokenizer.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
		model = AutoModelForTokenClassification.from_pretrained("yeshpanovrustem/xlm-roberta-large-ner-kazakh")
		nlp = pipeline("ner", model = model, tokenizer = tokenizer)

		labels_dict = {0: 'O', 
				   1: 'B-ADAGE', 
				   2: 'I-ADAGE', 
				   3: 'B-ART', 
				   4: 'I-ART', 
				   5: 'B-CARDINAL', 
				   6: 'I-CARDINAL', 
				   7: 'B-CONTACT', 
				   8: 'I-CONTACT', 
				   9: 'B-DATE', 
				   10: 'I-DATE', 
				   11: 'B-DISEASE', 
				   12: 'I-DISEASE', 
				   13: 'B-EVENT', 
				   14: 'I-EVENT', 
				   15: 'B-FACILITY', 
				   16: 'I-FACILITY', 
				   17: 'B-GPE', 
				   18: 'I-GPE', 
				   19: 'B-LANGUAGE', 
				   20: 'I-LANGUAGE', 
				   21: 'B-LAW', 
				   22: 'I-LAW', 
				   23: 'B-LOCATION', 
				   24: 'I-LOCATION', 
				   25: 'B-MISCELLANEOUS', 
				   26: 'I-MISCELLANEOUS', 
				   27: 'B-MONEY', 
				   28: 'I-MONEY', 
				   29: 'B-NON_HUMAN', 
				   30: 'I-NON_HUMAN', 
				   31: 'B-NORP', 
				   32: 'I-NORP', 
				   33: 'B-ORDINAL', 
				   34: 'I-ORDINAL', 
				   35: 'B-ORGANISATION', 
				   36: 'I-ORGANISATION', 
				   37: 'B-PERSON', 
				   38: 'I-PERSON', 
				   39: 'B-PERCENTAGE', 
				   40: 'I-PERCENTAGE', 
				   41: 'B-POSITION', 
				   42: 'I-POSITION', 
				   43: 'B-PRODUCT', 
				   44: 'I-PRODUCT', 
				   45: 'B-PROJECT', 
				   46: 'I-PROJECT', 
				   47: 'B-QUANTITY', 
				   48: 'I-QUANTITY', 
				   49: 'B-TIME', 
				   50: 'I-TIME'}

		single_sentence_tokens = [_.text for _ in list(razdel.tokenize(text))]
		tokenized_input = tokenizer(single_sentence_tokens, is_split_into_words = True, return_tensors = "pt")
		tokens = tokenized_input.tokens()
		output = model(**tokenized_input).logits
		predictions = torch.argmax(output, dim = 2)

		# convert label IDs to label names
		word_ids = tokenized_input.word_ids(batch_index = 0)
		previous_word_id = None
		labels = []
		for token, word_id, prediction in zip(tokens, word_ids, predictions[0].numpy()):
		#         # Special tokens have a word id that is None. We set the label to -100 so they are
		#         # automatically ignored in the loss function.
			if word_id is None or word_id == previous_word_id:
				continue
			elif word_id != previous_word_id:
				labels.append(labels_dict[prediction])
			previous_word_id = word_id
		assert len(single_sentence_tokens) == len(labels), "Mismatch between input token and label sizes!"

		sentence_tokens = []
		sentence_labels = []

		token_list = []
		label_list = []

		previous_token = ""
		previous_label = ""

		for token, label in zip(single_sentence_tokens, labels):
		    current_token = token
		    current_label = label
		    
		    # starting loop
		    if previous_label == "":
		        previous_token = current_token
		        previous_label = current_label
		        
		    # collecting compound named entities
		    elif (previous_label.startswith("B-")) and (current_label.startswith("I-")):
		        token_list.append(previous_token)
		        label_list.append(previous_label)
		    elif (previous_label.startswith("I-")) and (current_label.startswith("I-")):
		        token_list.append(previous_token)
		        label_list.append(previous_label)
		    elif (previous_label.startswith("I-")) and (not current_label.startswith("I-")):
		        token_list.append(previous_token)
		        label_list.append(previous_label)
		        sentence_tokens.append(token_list)
		        sentence_labels.append(label_list)
		        token_list = []
		        label_list = []
		    # collecting single named entities:
		    elif (not previous_label.startswith("I-")) and (not current_label.startswith("I-")):
		        token_list.append(previous_token)
		        label_list.append(previous_label)
		        sentence_tokens.append(token_list)
		        sentence_labels.append(label_list)
		        token_list = []
		        label_list = []
		    previous_token = current_token
		    previous_label = current_label
		token_list.append(previous_token)
		label_list.append(previous_label)
		sentence_tokens.append(token_list)
		sentence_labels.append(label_list)

		output = []
		for sentence_token, sentence_label in zip(sentence_tokens, sentence_labels):
		    if len(sentence_label[0]) > 1:
		        if len(sentence_label) > 1:
		            output.append((" ".join(sentence_token), sentence_label[0].split("-")[1]))
		        else:
		            output.append((sentence_token[0], sentence_label[0].split("-")[1]))
		    else:
		        # output.append((sentence_token[0], sentence_label[0]))
		        output.append(sentence_token[0])

		modified_output = []
		for element in output:
			if not isinstance(element, tuple):
				if element.isalnum():
					modified_output.append(' ' + element + ' ')
				else:
					modified_output.append(' ' + element + ' ')
			else:
				tuple_first = f" {element[0]} "
				tuple_second = element[1]
				new_tuple = (tuple_first, tuple_second)
				modified_output.append(new_tuple)
	else:
		return st.markdown("<p id = 'warning'>PLEASE INSERT YOUR TEXT</p>", unsafe_allow_html = True)
	return modified_output

#########################
#### CREATE SIDEBAR #####
#########################

with open("style.css") as f:
	css = f.read()

st.sidebar.markdown(f'<style>{css}</style>', unsafe_allow_html = True)

st.sidebar.markdown("<h1>Kazakh NER</h1>", unsafe_allow_html = True)
st.sidebar.markdown("<h2>Named entity classes</h2>", unsafe_allow_html = True)

with st.sidebar.expander("ADAGE"): st.write("Well-known Kazakh proverbs and sayings")
with st.sidebar.expander("ART"): st.write("Titles of books, songs, television programmes, etc.")
with st.sidebar.expander("CARDINAL"): st.write("Cardinal numbers, including whole numbers, fractions, and decimals")
with st.sidebar.expander("CONTACT"): st.write("Addresses, emails, phone numbers, URLs")
with st.sidebar.expander("DATE"): st.write("Dates or periods of 24 hours or more")
with st.sidebar.expander("DISEASE"): st.write("Diseases or medical conditions")
with st.sidebar.expander("EVENT"): st.write("Named events and phenomena")
with st.sidebar.expander("FACILITY"): st.write("Names of man-made structures")
with st.sidebar.expander("GPE"): st.write("Names of geopolitical entities")
with st.sidebar.expander("LANGUAGE"): st.write("Named languages")
with st.sidebar.expander("LAW"): st.write("Named legal documents")
with st.sidebar.expander("LOCATION"): st.write("Names of geographical locations other than GPEs")
with st.sidebar.expander("MISCELLANEOUS"): st.write("Entities of interest but hard to assign a proper tag to")
with st.sidebar.expander("MONEY"): st.write("Monetary values")
with st.sidebar.expander("NON_HUMAN"): st.write("Names of pets, animals or non-human creatures")
with st.sidebar.expander("NORP"): st.write("Adjectival forms of GPE and LOCATION; named religions, etc.")
with st.sidebar.expander("ORDINAL"): st.write("Ordinal numbers, including adverbials")
with st.sidebar.expander("ORGANISATION"): st.write("Names of companies, government agencies, etc.")
with st.sidebar.expander("PERCENTAGES"): st.write("Percentages")
with st.sidebar.expander("PERSON"): st.write("Names of persons")
with st.sidebar.expander("POSITION"): st.write("Names of posts and job titles")
with st.sidebar.expander("PRODUCT"): st.write("Names of products")
with st.sidebar.expander("PROJECT"): st.write("Names of projects, policies, plans, etc.")
with st.sidebar.expander("QUANTITY"): st.write("Length, distance, etc. measurements")
with st.sidebar.expander("TIME"): st.write("Times of day and time duration less than 24 hours")

######################
#### CREATE FORM #####
######################

text_field = st.form(key = 'text_field')
form_text = text_field.text_input('Insert your text here')
submit = text_field.form_submit_button('Submit')

st.markdown('Press **Submit** to have your text labelled')

if submit:
	annotated_text(label_text(form_text))