File size: 4,670 Bytes
87987fe
 
 
 
 
 
 
 
 
 
 
62551b2
87987fe
535e678
 
 
 
62551b2
 
 
 
 
 
 
 
 
535e678
87987fe
29daff8
87987fe
 
 
 
 
 
 
 
 
 
 
 
c1ad373
535e678
c1ad373
535e678
616477f
 
 
 
 
 
 
 
 
 
87987fe
535e678
87987fe
616477f
8641796
 
616477f
 
 
87987fe
 
 
62551b2
aaff21f
 
87987fe
535e678
 
 
616477f
 
 
535e678
87987fe
 
 
 
 
 
 
 
 
 
 
 
29daff8
 
 
535e678
62551b2
535e678
87987fe
535e678
 
 
 
 
 
 
87987fe
 
535e678
 
 
 
87987fe
616477f
62551b2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
616477f
62551b2
87987fe
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
import streamlit as st
from collections import defaultdict
import tqdm
import transformers
from transformers import AutoTokenizer
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import numpy as np
import plotly.figure_factory as ff
import plotly.express as px
import random

@st.cache_data
def load_data():
	return pd.read_csv('MassiveDatasetValidationData.csv')

def reload_example_text_data():
	random_id = random.choice(val_data['id'])
	tempdf = subset_df[subset_df['id']==random_id]
	tempdf.set_index('lang', inplace=True)
	tempdf = tempdf[['iso', 'text', tokenizer_name]]
	tempdf.columns=['ISO', 'Text', 'Num Tokens']
	tempdf.sort_values(by='ISO', inplace=True)
	st.session_state.examplesdf  = tempdf

# TODO allow new tokenizers from HF
tokenizer_names_to_test = [
  "openai/gpt4",
  "xlm-roberta-base",  # old style
  "bert-base-uncased",  # old style
  "sentence-transformers/paraphrase-multilingual-MiniLM-L12-v2",
  "bigscience/bloom",  # HuggingFace
  "StabilityAI/stablelm-base-alpha-7b",  # StableLM with Open Assistant
  "google/flan-t5-base",  # Flan T5 (better than T5), Google
  "facebook/mbart-large-50",  # Facebook
  "facebook/nllb-200-distilled-600M",  # Facebook
  "EleutherAI/gpt-neox-20b",  # same as Pythia
]

with st.sidebar:
	st.subheader('Tokenizer')
	# TODO multi-select tokenizers
	tokenizer_name = st.sidebar.selectbox('Select tokenizer', options=tokenizer_names_to_test, label_visibility='collapsed')

	if tokenizer_name not in ['openai/gpt4']:
		url = f'https://huggingface.co/{tokenizer_name}'
		link = f'Tokenizer is available [on the HuggingFace hub]({url})'
		st.markdown(link, unsafe_allow_html=True)
	else:
		link="Tokenized using [tiktoken](https://github.com/openai/tiktoken)"
		st.markdown(link)


	st.subheader('Data')
	with st.spinner('Loading dataset...'):
	    val_data = load_data()
	st.success(f'Data loaded: {len(val_data)}')

	with st.expander('Data Source'):
		st.write("The data in this figure is the validation set of the [Amazon Massive](https://huggingface.co/datasets/AmazonScience/massive/viewer/af-ZA/validation) dataset, which consists of 2033 short sentences and phrases translated into 51 different languages. Learn more about the dataset from [Amazon's blog post](https://www.amazon.science/blog/amazon-releases-51-language-dataset-for-language-understanding)")


	st.subheader('Languages')
	languages = st.multiselect(
		'Select languages',
		options=sorted(val_data.lang.unique()),
		default=['English', 'Spanish' ,'Chinese', 'Burmese'],
		max_selections=6,
		label_visibility='collapsed'
	)
	
	st.subheader('Figure')
	show_hist = st.checkbox('Show histogram', value=False)



	# dist_marginal = st.radio('Select distribution', options=['box', 'violin', 'rug'], horizontal=True)

	# with st.spinner('Loading tokenizer...'):
	#     tokenizer = AutoTokenizer.from_pretrained(tokenizer_name)
	# st.success(f'Tokenizer loaded: {tokenizer_name}')

	# # TODO - add the metadata data as well??? later on maybe
	# with st.spinner('Calculating tokenization for data...'):
	# 	if tokenizer_name not in val_data.columns:
	# 		val_data[f'{tokenizer_name}'] = val_data.text.apply(lambda x: len(tokenizer.encode(x)))
	# st.success('Completed.')

with st.container():
	if tokenizer_name in val_data.columns:
		subset_df = val_data[val_data.lang.isin(languages)]
		subset_data = [val_data[val_data.lang==_lang][tokenizer_name] for _lang in languages]
	
	st.header('Compare tokenization in different languages')
	fig = ff.create_distplot(subset_data, group_labels=languages, show_hist=show_hist)

	fig.update_layout(
		title=dict(text=tokenizer_name, font=dict(size=25), automargin=True, yref='paper', ),
		# title=tokenizer_name,
		xaxis_title="Number of Tokens",
    yaxis_title="Density",
    # title_font_family='"Source Sans Pro", sans-serif'
	) 
	st.plotly_chart(fig, use_container_width=True)

	st.subheader('Median Token Length')
	metric_cols = st.columns(len(languages))
	for i, _lang in enumerate(languages):
		metric_cols[i].metric(_lang, int(np.median(subset_df[subset_df.lang==_lang][tokenizer_name])))


	st.subheader('Example Texts')
	
	reload_example_text_data()
	if st.button("🔄 Refresh"):
		reload_example_text_data()

	st.dataframe(st.session_state.examplesdf)  # Same as st.write(df)


	






	with st.expander("About the project"):
		st.write("The purpose of this project is to compare the tokenization length for different languages. For some tokenizers, tokenizing a message in one language may result in 10-20x more tokens than a comparable message in another language (e.g. try English vs. Burmese). This is part of a larger project of measuring inequality in NLP.")