Spaces:
Runtime error
Runtime error
File size: 1,987 Bytes
9e6613e 1d9d1b1 9e6613e 1d9d1b1 9e6613e 1d9d1b1 9e6613e 1d9d1b1 c06481e 1d9d1b1 c06481e 1d9d1b1 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 |
"""
HuggingFace Spaces that:
- loads in HanmunRoBERTa model https://huggingface.co/bdsl/HanmunRoBERTa
- optionally strips text of punctuation and unwanted charactesr
- predicts century for the input text
- Visualizes prediction scores for each century
# https://huggingface.co/blog/streamlit-spaces
# https://huggingface.co/docs/hub/en/spaces-sdks-streamlit
"""
import streamlit as st
from transformers import pipeline
from string import punctuation
import pandas as pd
from huggingface_hub import InferenceClient
client = InferenceClient(model="bdsl/HanmunRoBERTa")
# Load the pipeline with the HanmunRoBERTa model
model_pipeline = pipeline(task="text-classification", model="bdsl/HanmunRoBERTa")
# Streamlit app layout
title = "HanmunRoBERTa Century Classifier"
st.title(title)
st.set_page_config(layout=layout, page_title=title, page_icon="π")
# Checkbox to remove punctuation
remove_punct = st.checkbox(label="Remove punctuation", value=True)
# Text area for user input
input_str = st.text_area("Input text", height=275)
# Remove punctuation if checkbox is selected
if remove_punct and input_str:
# Specify the characters to remove
characters_to_remove = "ββ‘()γγ:\"γΒ·, ?γ" + punctuation
translating = str.maketrans('', '', characters_to_remove)
input_str = input_str.translate(translating)
# Display the input text after processing
st.write("Processed input:", input_str)
# Predict and display the classification scores if input is provided
if st.button("Classify"):
if input_str:
predictions = model_pipeline(input_str)
# Prepare the data for plotting
labels = [prediction['label'] for prediction in predictions]
scores = [prediction['score'] for prediction in predictions]
data = pd.DataFrame({"Label": labels, "Score": scores})
# Displaying predictions as a bar chart
st.bar_chart(data.set_index('Label'))
else:
st.write("Please enter some text to classify.")
|