Spaces:
Sleeping
Sleeping
File size: 9,409 Bytes
e8d738f 699fb43 979777e e8d738f 699fb43 67336fc 979777e 699fb43 979777e 64d99fc 979777e 64d99fc 979777e 605cc24 979777e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 |
import gradio as gr
import numpy as np
import os
import requests
import torch
import torchvision.transforms as T
from PIL import Image
from transformers import AutoProcessor, AutoModelForVision2Seq
import cv2
def is_overlapping(rect1, rect2):
x1, y1, x2, y2 = rect1
x3, y3, x4, y4 = rect2
return not (x2 < x3 or x1 > x4 or y2 < y3 or y1 > y4)
def draw_entity_boxes_on_image(image, entities, show=False, save_path=None):
"""_summary_
Args:
image (_type_): image or image path
collect_entity_location (_type_): _description_
"""
if isinstance(image, Image.Image):
image_h = image.height
image_w = image.width
image = np.array(image)[:, :, [2, 1, 0]]
elif isinstance(image, str):
if os.path.exists(image):
pil_img = Image.open(image).convert("RGB")
image = np.array(pil_img)[:, :, [2, 1, 0]]
image_h = pil_img.height
image_w = pil_img.width
else:
raise ValueError(f"invaild image path, {image}")
elif isinstance(image, torch.Tensor):
# pdb.set_trace()
image_tensor = image.cpu()
reverse_norm_mean = torch.tensor([0.48145466, 0.4578275, 0.40821073])[:, None, None]
reverse_norm_std = torch.tensor([0.26862954, 0.26130258, 0.27577711])[:, None, None]
image_tensor = image_tensor * reverse_norm_std + reverse_norm_mean
pil_img = T.ToPILImage()(image_tensor)
image_h = pil_img.height
image_w = pil_img.width
image = np.array(pil_img)[:, :, [2, 1, 0]]
else:
raise ValueError(f"invaild image format, {type(image)} for {image}")
if len(entities) == 0:
return image
new_image = image.copy()
previous_bboxes = []
# size of text
text_size = 2
# thickness of text
text_line = 1 # int(max(1 * min(image_h, image_w) / 512, 1))
box_line = 3
(c_width, text_height), _ = cv2.getTextSize("F", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
base_height = int(text_height * 0.675)
text_offset_original = text_height - base_height
text_spaces = 3
for entity_name, (start, end), bboxes in entities:
for (x1_norm, y1_norm, x2_norm, y2_norm) in bboxes:
orig_x1, orig_y1, orig_x2, orig_y2 = int(x1_norm * image_w), int(y1_norm * image_h), int(x2_norm * image_w), int(y2_norm * image_h)
# draw bbox
# random color
color = tuple(np.random.randint(0, 255, size=3).tolist())
new_image = cv2.rectangle(new_image, (orig_x1, orig_y1), (orig_x2, orig_y2), color, box_line)
l_o, r_o = box_line // 2 + box_line % 2, box_line // 2 + box_line % 2 + 1
x1 = orig_x1 - l_o
y1 = orig_y1 - l_o
if y1 < text_height + text_offset_original + 2 * text_spaces:
y1 = orig_y1 + r_o + text_height + text_offset_original + 2 * text_spaces
x1 = orig_x1 + r_o
# add text background
(text_width, text_height), _ = cv2.getTextSize(f" {entity_name}", cv2.FONT_HERSHEY_COMPLEX, text_size, text_line)
text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2 = x1, y1 - (text_height + text_offset_original + 2 * text_spaces), x1 + text_width, y1
for prev_bbox in previous_bboxes:
while is_overlapping((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2), prev_bbox):
text_bg_y1 += (text_height + text_offset_original + 2 * text_spaces)
text_bg_y2 += (text_height + text_offset_original + 2 * text_spaces)
y1 += (text_height + text_offset_original + 2 * text_spaces)
if text_bg_y2 >= image_h:
text_bg_y1 = max(0, image_h - (text_height + text_offset_original + 2 * text_spaces))
text_bg_y2 = image_h
y1 = image_h
break
alpha = 0.5
for i in range(text_bg_y1, text_bg_y2):
for j in range(text_bg_x1, text_bg_x2):
if i < image_h and j < image_w:
if j < text_bg_x1 + 1.35 * c_width:
# original color
bg_color = color
else:
# white
bg_color = [255, 255, 255]
new_image[i, j] = (alpha * new_image[i, j] + (1 - alpha) * np.array(bg_color)).astype(np.uint8)
cv2.putText(
new_image, f" {entity_name}", (x1, y1 - text_offset_original - 1 * text_spaces), cv2.FONT_HERSHEY_COMPLEX, text_size, (0, 0, 0), text_line, cv2.LINE_AA
)
# previous_locations.append((x1, y1))
previous_bboxes.append((text_bg_x1, text_bg_y1, text_bg_x2, text_bg_y2))
pil_image = Image.fromarray(new_image[:, :, [2, 1, 0]])
if save_path:
pil_image.save(save_path)
if show:
pil_image.show()
return new_image
def main():
ckpt = "ydshieh/kosmos-2-patch14-224"
model = AutoModelForVision2Seq.from_pretrained(ckpt, trust_remote_code=True)
processor = AutoProcessor.from_pretrained(ckpt, trust_remote_code=True)
def generate_predictions(image_input, text_input, do_sample, sampling_topp, sampling_temperature):
inputs = processor(text=text_input, images=image_input, return_tensors="pt")
generated_ids = model.generate(
pixel_values=inputs["pixel_values"],
input_ids=inputs["input_ids"][:, :-1],
attention_mask=inputs["attention_mask"][:, :-1],
img_features=None,
img_attn_mask=inputs["img_attn_mask"][:, :-1],
use_cache=True,
max_new_tokens=128,
)
generated_text = processor.batch_decode(generated_ids, skip_special_tokens=True)[0]
# By default, the generated text is cleanup and the entities are extracted.
processed_text, entities = processor.post_processor_generation(generated_text)
annotated_image = draw_entity_boxes_on_image(image_input, entities, show=True)
return annotated_image, processed_text
term_of_use = """
### Terms of use
By using this model, users are required to agree to the following terms:
The model is intended for academic and research purposes.
The utilization of the model to create unsuitable material is strictly forbidden and not endorsed by this work.
The accountability for any improper or unacceptable application of the model rests exclusively with the individuals who generated such content.
### License
This project is licensed under the [Microsoft Open Source Code of Conduct](https://opensource.microsoft.com/codeofconduct).
"""
with gr.Blocks(title="Kosmos-2", theme=gr.themes.Base()).queue() as demo:
gr.Markdown(("""
# Kosmos-2: Grounding Multimodal Large Language Models to the World
[[Paper]](https://arxiv.org/abs/2306.14824) [[Code]](https://github.com/microsoft/unilm/blob/master/kosmos-2)
"""))
with gr.Row():
with gr.Column():
image_input = gr.Image(type="pil", label="Test Image")
text_input = gr.Radio(["Brief", "Detailed"], label="Description Type", value="Brief")
do_sample = gr.Checkbox(label="Enable Sampling", info="(Please enable it before adjusting sampling parameters below)", value=False)
with gr.Accordion("Sampling parameters", open=False) as sampling_parameters:
sampling_topp = gr.Slider(minimum=0.1, maximum=1, step=0.01, value=0.9, label="Sampling: Top-P")
sampling_temperature = gr.Slider(minimum=0.1, maximum=1, step=0.01, value=0.7, label="Sampling: Temperature")
run_button = gr.Button(label="Run", visible=True)
with gr.Column():
image_output = gr.Image(type="pil")
text_output1 = gr.HighlightedText(
label="Generated Description",
combine_adjacent=False,
show_legend=True,
).style(color_map={"box": "red"})
with gr.Row():
with gr.Column():
gr.Examples(examples=[
["images/two_dogs.jpg", "Detailed", False],
["images/snowman.png", "Brief", False],
["images/man_ball.png", "Detailed", False],
], inputs=[image_input, text_input, do_sample])
with gr.Column():
gr.Examples(examples=[
["images/six_planes.png", "Brief", False],
["images/quadrocopter.jpg", "Brief", False],
["images/carnaby_street.jpg", "Brief", False],
], inputs=[image_input, text_input, do_sample])
gr.Markdown(term_of_use)
run_button.click(fn=generate_predictions,
inputs=[image_input, text_input, do_sample, sampling_topp, sampling_temperature],
outputs=[image_output, text_output1],
show_progress=True, queue=True)
demo.launch()
if __name__ == "__main__":
main()
|