Spaces:
Running
Running
File size: 11,331 Bytes
c9196c4 071cfd5 e62445f 0a27978 efd290d 071cfd5 c9196c4 4d9a2c9 6daa786 4d9a2c9 efd290d 4d9a2c9 4dcfe05 791b3f1 4dcfe05 da23793 4dcfe05 4d9a2c9 4dcfe05 efd290d 4d9a2c9 4dcfe05 4d9a2c9 4dcfe05 071cfd5 ebb5620 d3cdf49 071cfd5 a485aee 071cfd5 a666b37 071cfd5 abffdcf 4dcfe05 abffdcf 1e12aa0 3ea5e48 f9ba5d1 1e12aa0 46cbeb2 88deb61 4836da8 88deb61 77a2745 f6374fa 46cbeb2 a9f4a86 01b80e5 4836da8 a9f4a86 01b80e5 4836da8 46cbeb2 01b80e5 4836da8 f6374fa 88deb61 7d9ed5d c9196c4 071cfd5 f6374fa 071cfd5 3fd32a0 f6374fa ab131b6 f6374fa 071cfd5 f6374fa 77a2745 f6374fa 071cfd5 77a2745 f6374fa 77a2745 3347a66 071cfd5 77a2745 9be2a68 f6374fa 9be2a68 77a2745 9be2a68 f6374fa 97eefc3 f6374fa 97eefc3 4836da8 f6374fa 97eefc3 f6374fa f9ba5d1 cb8c338 921810a f6374fa 5a8d686 77a2745 071cfd5 77a2745 071cfd5 3ea5e48 071cfd5 a485aee e62445f 071cfd5 77a2745 88deb61 7d9ed5d e62445f 3347a66 071cfd5 3b249e4 42a7017 2983940 6fdfc42 efd290d a485aee 6fdfc42 3b249e4 aba867e 6fdfc42 4dcfe05 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 |
import streamlit as st
import pandas as pd
import random
import time
import string
import gspread
import os
import json
import datetime
from oauth2client.service_account import ServiceAccountCredentials
# Load worker-specific stimuli
def get_google_creds():
service_account_json = os.getenv("SERVICE_ACCOUNT_JSON")
if service_account_json:
creds_dict = json.loads(service_account_json)
scope = ["https://spreadsheets.google.com/feeds", "https://www.googleapis.com/auth/drive"]
creds = ServiceAccountCredentials.from_json_keyfile_dict(creds_dict, scope)
return gspread.authorize(creds)
else:
st.error("Google service account credentials not found.")
return None
def get_next_worker_id():
client = get_google_creds()
if client is None:
return None
try:
# sheet_name = "Odd-One-Out Experiment Responses"
sheet_name = "Odd-one-out results v2.0"
sheet = client.open(sheet_name).sheet1
existing_worker_ids = sheet.col_values(1)[1:] # Get worker IDs (skip header)
assigned_workers = set(map(int, existing_worker_ids))
for i in range(1, 21): # Assign worker ID between 1 and 20
if i not in assigned_workers:
return i
return None # No available worker slots
except Exception as e:
st.error(f"Error retrieving worker ID: {str(e)}")
return None
# Load worker-specific stimuli
@st.cache_data
def load_worker_data(worker_id):
file_path = os.path.join("exp1", f"worker_{worker_id:02d}.tsv")
if os.path.exists(file_path):
df = pd.read_csv(file_path, sep='\t')
return df.dropna().reset_index(drop=True)
else:
return None
# Automatically assign worker ID
if 'worker_id' not in st.session_state:
# assigned_worker_id = get_next_worker_id()
assigned_worker_id = 4
if assigned_worker_id is None:
st.error("No available worker slots. Please try again later.")
st.stop()
st.session_state.worker_id = assigned_worker_id
st.session_state.df = load_worker_data(st.session_state.worker_id)
st.session_state.step = "instructions"
st.rerun()
# Load main experiment data assigned to individual worker
df = st.session_state.df
if df is None:
st.error("No stimuli available for this worker.")
st.stop()
# Function to generate a unique passcode
def generate_passcode():
return ''.join(random.choices(string.ascii_uppercase + string.digits, k=8))
# Function to upload responses to Google Drive
def upload_to_google_drive(response_df):
try:
client = get_google_creds()
# sheet_name = "Odd-One-Out Experiment Responses"
sheet_name = "Odd-one-out results v2.0"
try:
sheet = client.open(sheet_name).sheet1
except gspread.exceptions.SpreadsheetNotFound:
sheet = client.create(sheet_name).sheet1
sheet.append_row(["worker_id", "passcode", "question", "keyword", "selected", "correct_answer", "is_correct", "response_time"])
data_list = response_df.values.tolist()
for row in data_list:
sheet.append_row(row)
st.success("โ
Your responses have been recorded successfully.")
except Exception as e:
st.error(f"Error uploading to Google Drive: {str(e)}")
# Load training samples
def load_training_samples():
file_path = "training_samples.csv"
if os.path.exists(file_path):
return pd.read_csv(file_path).dropna().reset_index(drop=True)
else:
st.error("Training samples file not found.")
return pd.DataFrame()
# Load training data
training_df = load_training_samples()
# Initialize session state variables
if "step" not in st.session_state:
st.session_state.step = "instructions"
if "training_index" not in st.session_state:
st.session_state.training_index = 0
if "training_complete" not in st.session_state:
st.session_state.training_complete = False
if "experiment_index" not in st.session_state:
st.session_state.experiment_index = 0
if "experiment_complete" not in st.session_state:
st.session_state.experiment_complete = False
if "responses" not in st.session_state:
st.session_state.responses = []
if "start_time" not in st.session_state:
st.session_state.start_time = None
if "passcode" not in st.session_state:
st.session_state.passcode = None
if "show_answer" not in st.session_state:
st.session_state.show_answer = False
# Increase font size for instructions and multiple-choice options
st.markdown("""
<style>
.stApp {
font-size: 17px !important;
}
.correct-answer {
color: green;
}
.highlight-red {
color: #D9534F;
font-weight: bold;
}
/* Increase font size for radio button labels */
div[data-testid="stRadio"] label {
font-size: 17px !important;
}
/* Increase font size for general text */
div[data-testid="stMarkdownContainer"] {
font-size: 17px !important;
}
div[data-testid="stVerticalBlock"] p {
font-size: 17px !important;
}
</style>
""", unsafe_allow_html=True)
st.title("Scene Identification Experiment")
# **STEP 1: Instructions Page**
if st.session_state.step == "instructions":
st.header("๐ Instructions")
st.write("""
Welcome to the experiment! Hereโs how it works:
- You will be presented with five short text passages excerpted from **fictional stories**.
- The passages describe scenes related to a **specific keyword**.
- Four of these passages describe **a similar type of scene**, while **one is different**.
- Your task is to identify the passage that describes <span style='color:#D9534F; font-weight:bold;'>a scene distinct from the rest</span>.
- Please try to answer as quickly and accurately as possible.
""", unsafe_allow_html=True)
if st.button("Start Practicing"):
st.session_state.step = "training"
st.rerun()
# **STEP 2: Training Phase**
elif st.session_state.step == "training":
if st.session_state.training_index >= len(training_df):
st.session_state.step = "training_complete"
st.rerun()
else:
row = training_df.iloc[st.session_state.training_index]
st.write(f"### Practice Sample {st.session_state.training_index + 1}/{len(training_df)}")
st.write(f"**Keyword: {row['keyword']}**")
options = [row['text_1'], row['text_2'], row['text_3'], row['text_4'], row['text_5']]
correct_answer = options[row['odd_index'] - 1] # Get the correct answer using odd_index
user_choice = st.radio("Which scene is distinct from the others?", options,
key=f"training_{st.session_state.training_index}", index=None)
if st.button("Submit Answer"):
if user_choice is None:
st.warning("โ ๏ธ Please select an option first!")
else:
st.session_state.show_answer = True
st.rerun()
if st.session_state.show_answer:
st.write("### โ
The correct answer was:")
st.markdown(f"<p class='correct-answer'>{correct_answer}</p>", unsafe_allow_html=True)
if st.button("Next Practice Sample"):
st.session_state.show_answer = False
st.session_state.training_index += 1
st.rerun()
# **STEP 3: Training Complete Page**
elif st.session_state.step == "training_complete":
st.header("๐ Practice Complete!")
# st.write("""
# You have completed the practice phase! Now, you will proceed to the main experiment.
# Please remember to select the passage that describes <span style='color:#D9534F; font-weight:bold;'>a distinct scene from the rest</span>.
# Click **"Start Experiment"** when you are ready. Your response time will begin after you proceed.
# """)
st.markdown("""
You have completed the practice phase! Now, you will proceed to the main experiment.
Please remember to select the passage that describes <span style='color:#D9534F; font-weight:bold;'>a distinct scene from the rest</span>.
Click **"Start Experiment"** when you are ready. Your response time will begin after you proceed.
""", unsafe_allow_html=True)
if st.button("Start Experiment"):
st.session_state.start_time = time.time()
st.session_state.step = "experiment"
st.rerun()
# Ensure 'Submit Answer' button is hidden after experiment completion
if 'experiment_complete' not in st.session_state:
st.session_state.experiment_complete = False
# **STEP 4: Main Experiment**
elif st.session_state.step == "experiment":
if st.session_state.experiment_index >= len(df):
st.success("โ
You've completed the experiment!")
st.session_state.experiment_complete = True
if "passcode" not in st.session_state or st.session_state.passcode is None:
st.session_state.passcode = generate_passcode()
st.write("### ๐ Your unique completion passcode:")
st.code(st.session_state.passcode, language="text")
response_df = pd.DataFrame(st.session_state.responses)
response_df["worker_id"] = st.session_state.worker_id
response_df["passcode"] = st.session_state.passcode
upload_to_google_drive(response_df)
else:
row = df.iloc[st.session_state.experiment_index]
st.write(f"### Question {st.session_state.experiment_index + 1}/{len(df)}")
st.write(f"**Keyword: {row['keyword']}**")
user_choice = st.radio("Which scene is distinct from the others?", [
row['text_1'], row['text_2'], row['text_3'], row['text_4'], row['text_5']
], key=st.session_state.experiment_index, index=None)
options = [row['text_1'], row['text_2'], row['text_3'], row['text_4'], row['text_5']]
correct_answer = options[row['odd_index'] - 1] # Get the correct answer using odd_index
# if not st.session_state.experiment_complete:
if not st.session_state.experiment_complete and st.session_state.experiment_index < len(df):
if st.button("Submit Answer"):
if user_choice is None:
st.warning("โ ๏ธ Please select an option first!")
else:
response_time = time.time() - st.session_state.start_time
st.session_state.responses.append({
'timestamp': datetime.datetime.now().strftime("%Y-%m-%d %H:%M:%S"),
'worker_id': st.session_state.worker_id,
'passcode': st.session_state.passcode if st.session_state.passcode else "TEMP",
'question': st.session_state.experiment_index + 1,
'keyword': row['keyword'],
'selected': user_choice,
'correct_answer': correct_answer,
'is_correct': user_choice == correct_answer,
'response_time': round(response_time, 2)
})
st.session_state.experiment_index += 1
st.session_state.start_time = time.time()
st.rerun()
|